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Quantum Trajectory Theory for Cascaded Open Systems
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The quantum trajectory theory of an open quantum system driven by a photoemissive source is formu-
lated. The formalism is illustrated by applying it to photon scattering from an atom driven by strongly
focused coherent light.
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Research on the generation of nonclassical light has
been carried out with considerable success for several
years. There has been little work, however, on using non-
classical light to excite a second quantum system. Most
experiments are concerned either with directly measuring
the nonclassical characteristics of a source or using these
characteristics indirectly to illustrate some quantum
eA'ect. A common feature is that there is, at most, a
linear transformation of fields between the source and the
detector. The theory of such experiments need only cal-
culate some low-order correlation function of the fields.

What work there is on the interaction of a quantum
system with nonclassical light also concerns situations in

which the light is characterized by law-order correlation
functions. Much of it is an extension of Gardiner's treat-
ment of a two-state atom interacting with broadband
squeezed light [1],where the first-order correlation func-
tion characterizes the field. Beyond this, a considerable
amount of work exists dealing with interactions that take
place inside cavities. However, here a direct Hamiltonian
coupling is used, which treats the interaction in a time-
symmetric way. I am concerned with open system in-
teractions: a quantum source 4 emits photons and a
second quantum system 8 reacts to the emitted photons.
No general approach exists to solve such problems, aside
from that of writing down an infinite set of Heisenberg
equations which can only be solved for the simplest,
linear coupling, examples. In this Letter I propose a
tractable approach based on quantum trajectory theory
[2-5]. The quantum trajectories are constructed from a
master equation derived using reservoir theory. This
equation agrees with an equation obtained in a less direct
way by Kolobov and Sokolov [6].

It is natural to divide the problem into two parts: First
compute the properties of the field radiated by A; then
compute the response of 8 in terms of the known proper-
ties of A. There is a difficulty here, however. In general
an infinite number of correlation functions are needed to
characterize the field radiated by A. In semiclassical
theory this might be handled by generating stochastic
realizations of the radiated field and computing results by
numerical simulation. But the correlation functions for
nonclassical light cannot be produced by a stochastic
field. It is better, then, not to divide the problem into two

with

H =t'A(2tc )' [a8 (0) —H.c.],
Htttt =i'(2tctt) ' '[bN (I) —H.c.],

where re~ and x~ are the cavity linewidths, and a and b
are annihilation operators for the cavity modes. H de-
scribes two systems interacting with the same reservoir.
Problems of this type are not new. Dicke superradiance,
for example, involves many atoms interacting with the
same reservoir; the common reservoir interaction pro-
duces a coupling of the atoms through the relaxation
terms in the master equation. Equation (2) is different,
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FIG. I. Open quantum system B cascaded with a quantum
source A.

parts. My description is made in terms of a stochastic
wave function for the composite system 2 EB8. To obtain
the broken time symmetry I allow the interaction between
2 and 8 to be mediated by a reservoir R and use the
Born-MarkoA' approximation. Figure 1 illustrates a sim-

ple version of the source and driven system, where I as-
sume that only one mode of each cavity need be con-
sidered. The cavities have three perfectly reAecting mir-
rors and one mirror with transmission coefficient T« l.
Hamiltonians H~ and Hz describe the free cavity modes
and any interactions that take place inside the cavities.
HR is the free Hamiltonian of a traveling-wave reservoir
which couples the cavities in one direction only. The
fields 8(0) and t (I) that couple to the cavities are writ-
ten in photon Aux units.

The complete Hamiltonian for 4 SBSR is
J%

H =Hg +Hg+ HR+ HgR+ HgR
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where

U~ (r ) =exp [(i/6 ) (Hg +H~+ Hg~ ) r ] . (4)

Equation (3) states that the field at l is the time-retarded
field at 0, including a component radiated by A. Then if
g(t) is the density operator that evolves according to the
Liouville equation with Hamiltonian (1), we may define
the source-retarded density operator

(s)

and show, using Eqs. (1)-(4), that g'(t) satisfies the
Liouville equation with Hamiltonian

A.H' =Hg+ HR +HgR,

where

Hs =Ha+Ha+&&(&a&a) (& b

HsR =i 6 [[(2K ) ' a+ (2Kii ) '~ b] 8 (0) —H.c.j .

Notice that a and B now couple to the reservoir at the
same spatial location. They also couple directly, with
coupling constant (K'~ i~~) '

The derivation of the master equation corresponding to
H' is standard. I define the source-retarded reduced den-
sity operator p' = trg (g') and find

p'=(I/iA)[Hs p]+Cp C 2 C Cp 2 p C C,

with

(8)

p'(t) is all that is needed to calculate results for 8. If,
however, the unretarded density operator is required,
from Eq. (5) we have p(t) =exp(X~ r )p'(t), where pz
=X~p~ is the master equation for 2 alone [obtained
from Eq. (8) by tracing over 8].

The master equation (8) can be used directly to solve
problems involving a quantum system interacting with
nonclassical light. For analytical calculations it will often
be the best place to start. On the other hand, the quan-
tum trajectories defined by this master equation also pro-
vide a powerful computational method. More important-
ly, they clarify the physical interpretation. In quantum
trajectory theory p'(t) is replaced by an ensemble of sto-
chastic wave functions ~y, (t)) which describe the state of

however, because 2 and B couple to the reservoir at
diAerent spatial locations. Usually spatially separated
reservoir fields are treated as statistically independent.
Of course, this cannot be done for a geometry like that in

Fig. 1 where the output from 2 appears, after a delay
r =I/c, in the field that couples to B. We can, in fact,
eliminate the spatial separation by using the Born-
MarkoA approximation in the Heisenberg picture to re-
late g(l) to 8(0):

Ug(r)6'(l)U '(z) =8(0)+ —,
' (2x ) '~ a,

the system conditioned on the realization of a particular
history of signals at idealized detectors that monitor the
radiated fields. In this instance there is one detector, as
depicted in Fig. 1. It sees the superposition of fields that
enters the definition of the operator C [Eq. (9)l; these
fields cannot be monitored individually, in principle,
without upsetting the coupling between 8 and B. The
evolution of

~ y, (t)) is given in terms of the unnormalized
wave function ~i', (t)). Following the prescription for
tracing the statistics of photoelectron emissions back to
the source [2] I find that, between emissions, ~y, (t))
satisfies the Schrodinger equation

~ j,) =(I/i6) &
~ y, ),

with non-Hermitian Hamiltonian

5' =Hg+Hg —i 6[x'~a a+irgb b+2( K~x' ii)
' ab ] .

The emission times are determined in a Monte Carlo
fashion using the rate function r(t) =(y, (r) ~C C~ y, (t)),
and each emission is accompanied by the wave-function
collapse

~ y, (t)) C~ y, (r)).
I emphasize that there is no approximation in passing

from Eq. (8) to Eq. (10), only a decomposition of the
mixed state p'(t) into an ensemble of pure states ~y, (t)).
The result is a formulation that expresses the coupling
between 2 and B in a simple and natural way. First, the
non-Hermitian Hamiltonian (10) includes an interaction
that annihilates photons from 2 and creates them in B;
the reverse process does not occur, as we might expect for
the coupling between open systems. The asymmetric in-
teraction arises from a cancellation of terms contributed
by the reversible and irreversible parts of Eq. (8).
Second, 2 and B are coupled through the collapse opera-
tor C because detected photons cannot be associated with
photon emissions from either A or B separately.

I illustrate the theory by applying it to a two-state
atom driven on resonance by strongly focused coherent
light (Fig. 2). The source in this case is not nonclassical,
but the example is well suited to treatment by the new
theory. The source 8 consists of a laser cavity with out-
put coupling rate 2K, radiating coherent light with pho-
ton flux %. The coherent light is focused to a spot size on
the order of an atomic absorption cross section. The
quantum system B is a two-state atom placed at the focus
of the coherent light.

The situation diA'ers from that illustrated in Fig. 1

since the atom couples to modes other than those carrying
the incident light. Thus, in Fig. 2 the 4x modes coupling
to the atom are divided between four channels —two la-
beled by I and two by I =1 —I; I is the spontaneous
emission rate into the solid angle subtended by the
source. The incident light occupies one channel, and su-
perposed with forward scattering, ultimately falls on the
detector F. Backwards and sideways scattered photons
appear in the remaining three channels (with vacuum in-

puts) which terminate at the detectors F Time is mea-.
sured in units of twice the atomic lifetime and therefore
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FIG. 2. Input-output channels for an atom driven by
coherent light.

FIG. 3. Intensity correlation function at detector F for
ye =0.01 and (i) I =0.4; (ii) I =0.5; (iii) I =0.6; (iv) I =0.8;
(v) I =0.9; (vi) I"=1.0.

cF =J2Ka+ Are, c;=J2 —ra (12)

If the cavity mode is initially in the vacuum state, the
conditioned wave function factorizes in the form

~ y, (t))
=~a(t))~A, (t)), where ~a(t)) is a coherent state and

~
2, (t) ) is the state of the atom. After a short time

a(t) a„=J%/2K. Then the quantum trajectory for
the atom is governed by the Schrodinger equation and
collapse operators

all rates are dimensionless numbers; 2I +21 =2 is the to-
tal spontaneous emission rate and 0 ~ I ~ 1.

For this example the non-Hermitian Hamiltonian is

& =i 6 [dRK/2 (a —a ) —Ka a

—8+8 —42KI aa+],
where the first term on the right-hand side represents a
classical current driving the laser mode; ci+ and cr —raise
and lower the atom between states

~

—) (lower) and ~+)
(upper). There are now two kinds of collapses occur-
ring at rates RF(t) =(y, (t) ~C/CF ~ y, (t)) and RF(t)
=(y, (t) ~C~~CF-~ y, (t)), defined by the collapse operators

RF- =%—RF .

Consider the case I =0 which produces the largest
bunching eff'ect. In this case the incident light is focused
within the atomic absorption cross section and we might
expect a weak incident beam to be completely absorbed
(reflected). Indeed, the transmitted photon flux is very
small —RF —% rather than RF—%. However, it is not
zero; a few photons are transmitted. To understand why,
and why these photons are highly bunched, we consider
the wave-function collapse that accompanies the detec-
tion of a photon in transmission. Applying CF to Eq.
(15) gives

i w, ) = (r'+ Rr) '"(I
~

—) —4Ar )+&),

and the new detection rates

(17)

Using Eqs. (14), the corresponding photon detection rates
(photon fluxes) are

R, =a(I+ar) '(r'+ ar),

~w, ) = —(o~ci +Jara+)~77, ),
c,=J%+Jra, c;=42 —ra (14)

R,~, =%(r'+ Rr) ' [(r—r) '+ %r],

RF-~, =~ R,+~(r'+—~r) '2r'- (18)

iw, & =(I+Br) '"(~ —
&
—i'%r~+&) . (15)

Equations (13) and (14) are equivalent to those for an
atom inside a coherently driven cavity in the bad-cavity
limit [7]; 2I" and 21 correspond to the spontaneous emis-
sion rates into the cavity mode and out the sides of the
cavity, respectively. In the low-photon-flux limit, forward
scattering in the cavity system is known to be anti-
bunched [7,8]. The intensity correlation function show-

ing this antibunching is plotted in Fig. 3. The figure also
shows that antibunching is replaced by extreme photon
bunching as I is increased. I focus here on this extreme
photon bunching. What do the quantum trajectories say
about this'

In the low-photon-flux limit the solution to Eq. (13)
generally reaches steady state between collapses, with
steady-state wave function

For I =0 the forward photon Aux is now I =1, a change
RF1F/RF —I/R . This huge increase in flux produces the
extreme value of g (0). The increase is explained by
the collapse of the atomic wave function. If 1 =0 and
%((1, the atom collapses from near its ground state [Eq.
(15)] to its excited state [Eq. (17)]. The rate RF~F =I
= 1 is the forward spontaneous emission rate from the ex-
cited state. To explain the collapse, I note that the atom
is capable of reAecting all the incident photons so long as
it can deal with them one at a time. If, however, two
photons arrive within an atomic lifetime (approximately),
one photon can slip through while the atom is busy with
the other. Thus, after the detection of a photon in

transmission the atom collapses to its excited state, indi-
cating that it had to let one photon by because it had just
absorbed another.

For some incident photon pairs the second photon is
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FIG, 4. Sample quantum trajectory for %'=0. 1 and I =1.0.

proach to the limit, CF will be applied a large number of
times, An = RAt+~%AW, during a time interval At; AW
is a Wiener increment. The change in ~A, ) during At, in-

cluding the eAect of the hn collapses is

A~A, ) = —[(cryo + JWra+)At An J—f'/AcJ ]~A,).
(19)

In the limit, between the emissions generated by CF- the
unnormalized conditioned atomic wave function obeys the
equation

~A, ) = —[o+cr + (n/2)(cr+ —o )]~A, ) . (20)
detected in transmission after the first is detected in

reflection. In this case CF- collapses the atom to its
ground state (normal photon antibunching) which in-

creases the forwards I]ux by RFIF/RF —1/R.
The scenario behind the extreme photon bunching is il-

lustrated by the trajectory in Fig. 4 where the conditioned
excited state probability is plotted as a function of time
(R is 10 times larger than in Fig. 3). The figure shows
six backward scattering events, each accompanied by the
signature of normal photon antibunching, and three
events involving photon transmission. In the first of the
three events both photons of a closely spaced pair are
detected in the forward direction; in the second and third,
the first photon of a pair is detected in the forward direc-
tion and the second is detected in the backward direction.

To conclude let me answer a question that might seem,
superficially, to raise doubts about the new theory. It is
usual to model the interaction between an atom and
coherent light in a time-symmetric way, with an interac-
tion Hamiltonian that can raise and lower the atom. P
[Eq. (11)] only includes the raising part; it is reasonable,
then, to ask: How is it possible for a Rabi oscillation to
occur? The answer lies in the collapse operator CF [Eq.
(14)]. This accounts for transitions that lower the atom
while a photon is emitted into the coherent beam that ex-
cites the atom. Consider the limit % ~, I 0, with
VRI =II/2, where 0 is the Rabi frequency. In the ap-

Now the symmetric interaction needed to produce the
Rabi oscillation appears explicitly.
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