
VOLUME 70, NUMBER 15 PH YSICAL REVI EW LETTERS 12 APRIL 1993

Driving a Quantum System with the Output Field From Another
Driven Quantum System
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Quantum Langevin equations and a master equation are derived for a two-atom system in which
the first atom is driven by coherent field, and the fluorescent light used to drive a second atom. We
show that the light beams from both atoms are antibunched, and that they are mutually anticorre-
lated.

PACS numbers: 42.50.Dv

The development of the theory of nonclassical states of
light [1—3] and the fact that it is now possible to produce
reliable sources of both antibunched [4] and squeezed [5]
light has led to the consideration of how one should de-
scribe the driving of an optical system by a nonclassical
light field. This was first done by Gardiner [6] for the
special situation of incoming squeezed white noise, and
subsequently methods based on the adjoint equation [7]
were used to describe the driving of a single atom with
Gaussian, but nonwhite, squeezed light [8—10], which is
a very good model of the light produced by a degenerate
parametric oscillator.

It is ironic that the first kind of nonclassical light stud-
ied was antibunched light [4, 11], but it has so far been
unknown how to treat the problem of driving a system
with antibunched light, although the related problem of
a laser with a sub-Poissonian pump has been treated in
[12]. This is particularly interesting, since antibunching

is a property of fourth order correlation functions, while
squeezing is a property of second order correlation func-
tions. In any Markovian approximation, only second or-
der correlations are important, so that any fourth order
correlation effects will not be noticeable in this degree
of approximation. Thus, we can expect significant non-
Markovian effects if a system is driven by antibunched
light.

The major problem here is how one writes a physically
acceptable formalism which allows coupling from atom j.
to atom 2 without allowing coupling in the reverse direc-
tion. It should be borne in mind that in the laboratory
this is achievable with a unidirectional coupler, utiliz-
ing Faraday rotation, which involves the alignment of a
magnetic field with a direction of propagation, effectively
breaking reflection invariance of the optical system. We
will find that we must do the same in our Hamiltonian.

We shall adapt the input-output methods of [13—15]
and write the Hamiltonian for our system as

H=H, y, + Ckuhlu)l b(tee)b(~) +ih d'art(~) (o, bt(~) —oi+b(u)))

with

A+(x, t) =

Here o.&, o.
z are independent Pauli matrices for the dif-

ferent atoms (in fact, however, they can be interpreted
as arbitrary operators if more general systems are being
considered). For the case of two two-level atoms being
considered here H,~, is defined as

b(w, t) = —i la lb(a, t) + Ki(cu)o i (t) + Kq(cu) oz(t)e.
1

H,y, ———hAo.
q + —hAo. 2,2 1 2

We interpret the b(w) to be defined so that the (one di-
mensional) electric field is but it can also be interpreted more generally.

A(x, t) = A+(~, t)+A (x,t)- The quantity r is such that cr is the distance between
the two atoms, and for definiteness will be considered
positive in what follows. The reason for this interpre-

OO tation will become clear shortly. Although we write ev-
dio b(u), t) e' *I'. (3) erything in terms of io, which can take on both positive

27C —QQ and negative values, the integrals in (1) and (3) are really
over a wave-number variable given by a/c, so that w is
not really a frequency. The commutation relations are of
course [b(~), bj (io')] = b(cu —~').

The equation of motion for b(w) is
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which can be integrated to give

b(ur, t) = e 'I I( —o)b dt'e '"I ' ' (ri(~)o, (t)+Kg(~)o2 (t) e ' ) . (6)

A Markov approximation can now be made, as in [15,
16]. We assume that all coupling is within a rather nar-
row bandwidth 4 of 0 and that

Ki(A) = 2' ' rg(A) = y2

2' '

ri( —A) = r2( —0) = 0. (7)

Thus, we break reflection invariance by making the K
values for positive and negative a difFerent from each
other.

We then can write an expression for A+(x, t) as in (3),
and make the approximation

d~ e' (' ') ri(u)) = +2~pi6(t —t') .
0—A

This delta function will in fact be only an approximate
delta function with a width in time ~ 6, which will in
practice be far smaller than any decay constants involved.

We Bnally arrive at the expression

is a step function.
This represents a field with both left-to-right and right-

to-left propagating parts. The right-to-left propagating
part is a free field b,'„(t + x/c), which does not interact
with either atom. The left-to-right propagating part is
the remainder of the expression, which has an incom-
ing free field, which interacts with the two atoms, at
the points 2: = 0 and x = c~-, respectively. The terms
~quoi (t —x/c) and ~p2oz (t —z/c+ r) represent radi-
ation from the Brst and second atoms, respectively. The
distance between the atoms is clearly cw, and the difI'er-
ence in the arguments of a&, oz, represents the time ~
for light to pass from one atom to the other.

If now a is any operator in the Hilbert space of the two
atoms we can write the equation of motion

a = ——„[a,H, y, ]

+ d~K ( ) ([ a]b'( t) —b( t)[ + a])
A+ (x, t) = b;„(t —z/c) + b,'„(t + x/c)

+u(x/c) V &go, (t —x/c)
+u(x/c —7.)~pg(T2 (t —z/c+ ~),

where
(9)

+ dwr2(w) ([o2, a]bt((u, t) —b((u, t)[(Tq+, a]) . (11)

The u integrals are actually restricted to the interval
(A —6, 0+6), so that we can, using (7), express the inte-
grals over b(a, t), bt (w, t) in terms of only the left-to-right
propagating part. Using (7) and (9), we get

—~i +vw»'. (') + —~|"+vv~». (~)) I~ ~i)2 2
—I~, ~') (—~2 + v'vn'~i (~ —~)+ v~~». (~ —~))

+ —~2 + p&p2~~+ t —~ + p2b,.„ t —~ a, o.
2

This is our central equation. Notice that if a is an opera-
tor of the first atom, then we can set [a, o.2+] = [a, o.

z ] = 0,
and we obtain a quantum Langevin equation for atom 1
only: The first atom therefore does not feel any efFect
from the second atom. In contrast, the second atom is
influenced by the output from the first atom.

This result can be seen to lead to a natural interpre-
tation, since the equation of motion for a system op-
erator of the second atom is just the usual quantum
Langevin [13—15] equation, but with an input field equal
to the output field from atom 1, delayed by 7..

It is clear that we can similarly find equations of mo-
tion for systems in which there are more than two atoms,
and in which succeeding atoms in a chain are driven by
the output of the previous atom. In the case that there is
no feedback, i.e. , no atom feeds its output into an atom

which is previous to it in the chain, the delay 7. is essen-
tially an arbitrary constant, since all results for a given
delay can be obtained from those with another value for
~ by appropriate adjustments. We therefore let ~ ~ 0+
in (12). From the resulting equation we can derive a mas-
ter equation for the reduced two atom density operator in
the Schrodinger picture p = Trs, i~ (pq (., ) by computing

~ II OpTr (apiog) = Tratoms aS
~Ot

where p, , is the Heisenberg picture density operator for
the whole system. We consider in this paper only the
case in which b;„(t) is a vacuum field, so that pt, tbt„(t) =
b;„(t)pion ——0. More general situations involve the use of
quantum Ito calculus, and will be treated elsewhere.
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FIG. 1. Schematic diagram of the coupling of the two
atoms to each other and to other modes.

In writing this master equation, we also generalize to
the situation in which the atoms are coupled to other
modes with coupling constants gi, g2, and these represent
the fact that the driving fields are not perfectly coupled to
the atoms and also allow us to couple in a driving field.
Going into the interaction picture, we find the master
equation for an incident coherent electric field E in the
Ki channel,

~p fr+'9r ~ or or P)Bt

+
2 ( +2P+2 P+2o2 +2+2P)

/2+$2 — + + +

v Yl f2[&2 &1 P] + Qgl Y2[por~ ~2 ]

~qg [Eo i+ —E*o, p] . (14)

The situation is illustrated in Fig. 1. Notice that if we
trace out over the second atoms we get a master equation
for atom 1 in which there is no influence of the second
atom, but we cannot do this for atom 2. Furthermore, if
we use the same technique for a two-level atom driven by
a degenerate parametric oscillator, and use a positive-P
representation [10, 15, 17] for the oscillator variables, we
get exactly the equations already used in [8—10) for the
analysis of that problem.

The solution of (14) is quite straightforward. We corn-
pute the stationary normally ordered intensity correla-
tion functions of the output fields, which are given by [1,
15]

(I,(t)I, (0)), = p, p, Tr(,+, V(t) (, p, ,+) ) (15)

where V(t) is the (two-sided) evolution operator, such
that V(t) (p(t')) = p(t+ t'), and p, is the stationary so-
lution of the master equation. The correlation functions
are related to photon counting, and can be measured by
the methods of [18]. They represent essentially the con-
ditional probability of counting a photon from atom i a
time t after counting a photon from atom j.

This kind of equation is already too complicated for
any analytical results to be of any use. A numerical so-

FIG. 2. Plots of (i) solid line, (Ir(t)Ir(0)), ; (ii) dashed
line, (I2(t)I2(0)), ; (iii) dotted line, (Ii(t)I2(0))„(iv) dot-
dashed line, (I2(t)Ir(0)), .

lution of the fifteen coupled differential equations (12) is
readily obtained giving solutions for V(t), p„and hence
(I,(t)I~ (0))„in a matter of seconds on any modern work-
station. A typical set of results of these are shown in Fig.
2. Features which appear for all reasonable ranges of pa-
rameters are the following

(i) A slight enhancing of the antibunching near t = 0
in the light from second atom compared with that of the
first atom.

(ii) A pronounced anticorrelation in (I2 (0)Ii (0)), .
This arises because of the antibunching. If a photon is
measured in beam 1, then it is not available to excite
atom 2. The anticorrelation is not perfect, since emis-
sion depends on the excitation of each atom however,
because of the antibunching, if a photon was counted in
beam 1, then there was a reduced probability of there
having been one previously to excite atom 2.

(iii) This anticorrelation becomes more pronounced
in (I2(t)Ii(0))„which initially decreases as t increases.
This is because there will be no further photons to ex-
cite atom 2 in the time immediately following the emis-
sion. Eventually, of course, photons do appear, and
(I2(t)Ir(0)), rises to a value representing zero correla-
tion.

(iv) However, this effect is not present in (Ii(t)I2(0)),
and this correlation simply rises to reach its equilibrium
value.

The formalism presented here is quite general, and
provides the basis for a "modular" or "network" quan-
turn optics, completing the idea originated by Yurke and
Denker [19]. This is a necessary tool if communication
systems based on nonclassical states of light are to be
realized. A more detailed development will be published
elsewhere.

Carmichael [20] has independently developed a similar
formalism which also appears in this issue, and I wish
to thank him for agreeing to this method of publication.
I wish to thank 3ILA for hospitality where most of this
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work was done, and in particular Peter Zoller and Scott
Parkins for conversations and help with computations.
The work at JILA is supported in part by the NSF, and
the travel to jILA was supported by a grant from the
University of Waikato Research Committee.¹te added. —On completion of this work it was
brought to my attention that work by Kolobov and
Sokolov [21] has developed similar equations in a difFerent
context.
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