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Tensor-scalar theories of gravity are shown to generically contain an attractor mechanism toward
general relativity, with the redshift at the beginning of the matter-dominated era providing the
measure for the present level of deviation from general relativity. Quantitative estimates for the
post-Newtonian parameters v — 1, 8 — 1, and G/ G are given, which give greater significance to
future improvements of solar-system gravitational tests.
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Most attempts at unifying gravity with the other in-
teractions (from the original Kaluza-Klein theory down
to superstring theories) include a prediction of the ex-
istence of massless scalar fields coupled to matter with
gravitational strength. An independent motivation for
considering scalar partners to the usual tensor gravity of
Einstein is furnished by inflationary models which find in
the framework of tensor-scalar theories of gravity a tech-
nically natural way of exiting inflation [1-3]. In a funda-
mental tensor-scalar theory one expects the ratio a? be-
tween the couplings to matter of scalar and tensor fields
to be of order unity. However, the present solar-system
gravitational experiments set (at the 1o confidence level)
a tight upper bound on this ratio [4],

agolar-system <107%, (1)
which seems to argue against the existence of long-range
scalars. Perhaps such a pessimistic interpretation of the
limit (1) is premature.

By examining general tensor-scalar cosmological mod-
els, we find that they generically contain an attractor
mechanism toward general relativity, i.e., a® tends to-
ward zero during the matter-dominated era of cosmolog-
ical evolution. The possibility of such a mechanism has
been previously suggested [2, 3], but without giving any
firm argument that general relativity is indeed a generic
attractor of tensor-scalar theories, nor quantitative esti-
mates of the efficiency of this attractor mechanism.

The most general action describing a metric tensor-
scalar theory (with massless fields) is [5-7] [see Ref. [8] for
a comprehensive study of tensor-(multi)scalar theories]

S = (167G,)~ ! /d4xgi/2[R* —2g%8,,p0,¢]

+Sm[Ym, A%(9)gp] - (2)
G, denotes a bare gravitational coupling constant, and
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R. = g” R}, the curvature scalar of the “Einstein met-
ric” gj,,. The last term in Eq. (2) denotes the action of
the matter, which is a functional of some matter vari-
ables, collectively denoted by 1, and of the (“Jordan-
Fierz”) metric

G = A2(P)gp -

The universal coupling of matter to §,, means that phys-
ical rods and clocks measure this metric. However, the
field equations of the theory (and in particular the cos-
mological evolution equations) are better formulated in
terms of the variables (g;,, ) which describe the two
types of dynamical degrees of freedom present in the
theory (massless helicity-2 and massless helicity-0 exci-
tations). The logarithm of the conformal factor relating
Juv to g;ua

a(p) =lnA(y) ,

and its gradient,

a(p) = da(p) /0y,

are the two basic functions describing the coupling be-
tween the canonical scalar field and matter. [A = expa
and o are linked to the traditional Jordan-Fierz-Brans-
Dicke field ® and its associated (field-dependent) param-
eter w(®) through G, A% = 1, o? = (2w + 3)71].

The field equations read

* * 1 % kK
R}, =208,008,p + 81G. (TW - §T g,“,) » (33)
Og.p = —47G,a(p)T, , (3b)

with TH = 2(g.)" /265, /6g},, denoting the stress-
energy tensor in the g* units, and where all tensorial
operations are performed by using this metric. The gra-
dient a(yp) in Eq. (3b) plays the role of the basic coupling
strength between the scalar field and matter. Its square
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o? appears in all quantities where a scalar interaction
mediates between two bodies [8]. Its present value is
constrained by Eq. (1).

Homogeneous cosmological spacetimes can be repre-
sented both in the Einstein conformal frame,

ds? = —dt? + R2(t.)d¢?
and in the Jordan-Fierz one,

ds? = —di? + R*(§)de? |
with

de? = (1 — kr?)~1dr? + r2(d6? + sin® 6d ?)
denoting the metric of a 3-space of constant curvature
k = +1,0 or —1. The physical cosmic time ¢ and scale

factor R are related to their Einstein-frame counterparts
through

df = A(p(t.))dt. ,  R(E) = A(p(t.)) Ra(ts) ,

in which ¢(t.) is the (spatially averaged) cosmological
value of the scalar field. The field equations (3) give
(with an overdot denoting d/dt., and H, = R./R.)

—3R./Ry = 470G (px + 3p.) + 267, (4a)
3H? + 3k/R? = 81G.pu + 92, (4b)
@+ 3Hup = —4nG.(px — 3ps)a(ep) - (4c)

The g*-frame density and pressure [T = (p. + Px)
ukuy + p.gl”, with g% ulul = —1] are related to their
directly measurable counterparts by p, = A%5, p, = A*p.

We found that it was possible in Egs. (4) to decouple
the cosmological evolution of the scalar field by intro-
ducing as evolution parameter the “p time” (not to be
confused with the pressures p. or p):

p= /H*dt* =1In R, + const.

For simplicity we shall here restrict ourselves to spatially
flat cosmologies, k = 0 (see Ref. [9] for the discussion
of the general case). Then Eqs. (4) yield the following
simple decoupled equation for the p evolution of ¢ (with
a prime denoting d/dp):

T+ (1= N = (1= 3Na(y) | (5)
with A = p./p« = p/p being, under the usual approxi-
mations, a known numerical constant during each cosmo-
logical era: A = —1, 1/3, 0 in the inflationary, radiative,
and matter-dominated eras, respectively.

The qualitative features of the dynamics described by
Eq. (5) is readily seen by its mechanical analog: motion
(in “p” time) along the ¢ axis of a particle with velocity-
dependent inertial mass m(¢’) = 2/(3—¢'?) experiencing
a damping force —(1 — A\)¢’ and an external force deriv-
ing from the potential +(1 — 3\)a(y). [The positivity
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of p implies ¢’? < 3; Eq. (5) represents a kind of “rela-
tivistic” dynamics.] During the radiation era (A = 1/3)
¢ is decoupled from the external potential and any ini-
tial velocity ¢’ brought into this era is quickly (within a
few units of p time) damped out, and ¢ comes to rest,
¢ = ¢pr = const. The scalar field’s evolution in the
subsequent matter era (A = 0) is then the motion of
a particle starting at rest somewhere in the potential
a(p) = In A(¢) which responds to the gradient of the
potential and is subject to simple damping. Therefore ¢
simply moves down any gradient of a(¢) and tends to be
captured (by damping) near a minimum of a(yp) [where
o(Pmin) = 0a/Opmin = 0]. This precisely describes an
attractor mechanism toward general relativity (a = 0),
which can be expected to take place for generic classes of
coupling functions a(y) and starting values @r of ¢ out
of the radiation era. This naturally reconciles a funda-
mental tensor-scalar theory of gravity with the tight ex-
perimental upper bound (1). [Among the exceptions that
do not belong to the class of GR-attracted theories, one
can note the original Jordan-Fierz theory (a(yp) = ayp;
constant-slope potential), and the constant-G theory [10]
(a(p) = In cos ¢ in which ¢ tends to fall all the way down
to a = —o0, |a| = +o00; i.e., toward pure scalar gravity).]

An estimate of the efficiency of this attractor mecha-
nism can be made by considering the simple model of a
parabolic (attractive) potential, a(p) = Lkp?. With suf-
ficient curvature of the potential (x > 3/8), ¢ undergoes
damped oscillatory motion about the minimum of a(yp),

—1/2
o(p) = aTR (1 — _83_#;) e #Psin(wp+06r), (6)
with w = (3/4)(8x/3 —1)1/2, r = arctan|[(8x/3 — 1)1/2],
and ap = Kk@g being the slope of the potential at the
initial position of ¢ (i.e., at the end of the radiation era).

If inflation did not occur, it is natural to assume that
the state of the tensor-scalar system coming out of some
primordial Planck era was order of unity away from gen-
eral relativity; then ag = const ~ 1 during the sub-
sequent radiation era. On the other hand, if inflation
did occur, it has been found [11, 12] that the slope agr
upon entering the radiation era must be greater than
some lower-bound i, (estimated to be at least 0.16
[11]) in order that inflation terminate adequately. If this
happens in a non-fine-tuned way [13], we expect to have
again arp ~ 1, and we proceed under this assumption.
The total p time separating our present epoch from the
end of the radiation era is computed from the equations
above (and k = 0), obtaining

Po = ln[3ﬁ2/(87réﬁradiation)]0 + G(SDR) - a(‘Po) ~ 10

(using H ~ 75 kms *Mpc™! and k ~ 1). We now
have the ingredients needed in Eq. (6) to give a numer-
ical estimate of the deviation from general relativity to
be expected at the present epoch: in terms of the post-
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Newtonian parameter v we obtain (with 6y = wpg + 6r)

_ 208 2a%
T 1+4+02  1-3/(8k)

1—7 sin?6p e~ 2P0 ~ 3 x 10~7 ,

(7)

when considering values of k sufficiently above 3/8, and
using ar ~ 1 and sin? §y ~ 1/2.

This “strong” curvature (k > 3/8) case represents the
lower bound on the predicted magnitude of 1 — v. In-
deed, similar estimates for the other attractor scenarios
(local minimum with £ < 3/8, minimum at infinity in
field space [a(p) ox ¢~ "]) generically yield substantially
higher values for 1 — . For instance, the attraction in
a parabolic potential of “weak” curvature (k < 3/8) ex-
hibits a purely damped relaxation toward the minimum
with an efficiency such that

1 — v~ 2a%e 2P0 (8)

when & is sufficiently below 3/8. The efficiency (8) is
always less than the one in the critically damped case
(k = 3/8), in which

2
1—v~2a% (1 + %po) e3P 4% 1075 . (9)
This analysis has been generalized to the case of negative
spatial curvature cosmologies [9]. Again we find that the
analog of Eq. (7) is a lower bound, and that (under the
assumption ag ~ 1) the theoretically likely level of devi-
ation from general relativity is sensitively dependent on
the value of the present total cosmological matter density,

~matter
P

—-3/2
-5

1 -7y~ 2a% (
(where pmetter — 10730 gem=3 corresponds to Q =
patter / seritical ~ .1 if H = 75 kms™! Mpc~1).

Correlatively to the above predictions for 1 — «, the
post-Newtonian parameter [ is given by

B—1=¢r(l+71-7),

and the present time variation of the effective Newtonian
coupling “constant” G = G,A?%(1 + o?) is at the level

(G/@)ol ~ (1 + k)1 — ¥)Ho = (48 — v — 3)Ho .

This latter connection indicates values for G which will
be difficult to detect in solar-system experiments. More
generally Eq. (6) indicates that all deviations from gen-
eral relativity had already been driven to a very small
level during the last few p-time units, i.e., during the last
few Hubble time scales. This means in particular that,
modulo small corrections of order 1 — v, general relativ-

ity provided an adequate description of gravity during
the entire history of our Galaxy (the only possible excep-
tion to this result could come from strong gravitational
field effects, which are the subject of a separate work
[14]). On the other hand, the scenario (6) implies that
the coupling strength of gravity G underwent strong os-
cillations (AG/G ~ a%) during the first few Hubble time
scales of the matter era (see Ref. [9]). It would be inter-
esting to study the consequences of such oscillations on
the formation of structure in the universe

In conclusion, tensor-scalar theories of gravity generi-
cally contain a natural attractor mechanism tending to
drive the world toward a state close to a pure general
relativistic one. The large but finite redshift factor sep-
arating us from the end of the radiation-dominated era
provides the measure for the expected present deviations
from general relativity, and leads us to estimate that
they are small but not unmeasurably small. The numer-
ical estimates, Egs. (7)—(10), should hopefully provide
new, strong motivations for experiments which push be-
yond the present empirical upper bounds on the post-
Newtonian parameters v — 1 or 8 — 1. The scientific
implications of nonzero results for them would be enor-
mous: it would signal the existence of a new long-range
interaction.
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