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Derivation of Ohm's Law in a Deterministic Mechanical Model
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We study the Lorentz gas in small external electric and magnetic fields with the particle kinetic ener-
gy held fixed by a Gaussian "thermostat. " Starting from any smooth initial density, a unique stationary,
ergodic measure is approached for times t ~. The steady-state electric current J(B,E) is given by a
Kawasaki formula and the entropy production J E/T, with T the "temperature, " is equal to both the
asymptotic decay rate of the Gibbs entropy and minus the sum of the Lyapunov exponents. The Einstein
and Kubo formulas hold, i.e. , J(B,E) =o(B) E+ higher order terms, with the diffusion matrix D(B) at
E =0 given by ka T times the symmetric part 8(B) of the conductivity matrix.

PACS numbers: 05.60.+w, 05.45.+b

We consider the Lorentz model of a metallic conductor
given by a classical point particle or a noninteracting gas
of such particles ("electrons" ) moving in a periodic array
of fixed, hard, convex scatterers ("ions"). Here we study
the validity of Ohm's law in the presence of applied fields.
At present, no general statistical mechanical theory can
predict which microscopic dynamics will yield such trans-
port laws, and their derivation has been referred to by
Peierls as one of the outstanding unsolved problems of
modern physics [1]. In addition to this fundamental in-
terest, our work may also be of relevance to some beauti-
ful experimental systems constructed recently by micro-
fabrication —the so-called "antidots" —which are lattice
structures with periodicities of order 10 nm [2]. The ex-
perimental observation of magnetoresistance in these sys-
tems, with Fermi wavelength smaller than the superlat-
tice spacing, has been interpreted with reasonable success
in terms of classical dynamics [2].

The Lorentz model, also known as the dispersed bil-
liard, possesses very strong hyperbolic properties which
allow the diffusive Brownian motion of (undriven) test
particles to be rigorously established in a long length- and
time-scale limit [3]. This requires that the scatterer
configuration have ftnite horizon, so that any particle
travels only a uniformly bounded time freely between col-
lisions. (When there is infinite horizon —as is typically
the case for the antidots [1]—the diffusion is expected to
be anomalous with the mean-square displacement grow-
ing like t lnt [4].) However, under the infiuence of an ap-
plied electric field, the particles in this model accelerate
without any limiting velocity, because there is no dissipa-
tive mechanism to absorb the energy put in as work by
the electric field. The actual drift appears to be sub-
linear, with the net displacement in the direction of the
field apparently growing like t . This was noted by
Moran and Hoover [5], who proposed and studied numer-
ically a modification of the Lorentz gas which incorpo-
rates a frictional term designed to model the interaction
of the test particle with a "heat bath. " The friction co-

g=E (p/m)/(pz/m), (3)

so that kinetic energy is fixed. Although our work can be
generalized to d & 2, we only discuss here d =2. The re-
duced phase space, at each fixed value of the particle
speed v, has coordinates X =(q ~t,tqz, 0), where 0 is the an-
gle of the particle velocity vector with respect to the 1

direction. It is easy to verify that the divergence of the
dynamical velocity vector X is —

g, so that the Liouville
measure dpo =dq dO is not preserved when E&0. On the
other hand, observe that Eqs. (1)-(3) define a fiow on the
phase space, running backward as well as forward, and
reversible, i.e. , starting from an initial phase point X(0)
we get X(t) for all t and if one reverses velocities and
magnetic fields at I = r then X(t+2r ) is just X(0) with
velocities reversed.

It should be emphasized that for a correct application
of the general NEMD method one should properly con-
sider an W-particle system with W large. In that situa-
tion, holding the total kinetic energy K= —, P;=~m;q;
fixed should arguably be equivalent to holding the tem-
perature fixed, with the identification K =Ndktt T/2

efficient is chosen according to Gauss "principle of least
constraint" [6], so that the kinetic energy of the particle
is held at a fixed constant value. This is a simple example
of a new method in nonequilibrium molecular dynamics
(NEMD) which has been developed in the past decade by
Evans, Hoover, Morriss, Nose, and others [7].

To state precisely the model, the motion between col-
lisions is governed by the set of first-order equations

q =p/m,

p =E+px B —
Cp

q = (q ~, . . . , qd ) are the Cartesian coordinates of the par-
ticle, p = (p ~, . . . , pd ) are the corresponding momenta,
and we have added to the Moran-Hoover model a
Lorentz force produced by an external magnetic field.
The "friction coeScient" g is chosen as
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Equations (1) and (2) would then hold for each (q;, p;)
with (=E g;v;/2K. It is easy to check, with X now rep-
resenting a point in (2dN —1)-dimensional phase space,
that

been known for a long time [9], they are generally purely
formal since the convergence of the integral is not known.

From Eq. (6) with p =v, one obtains a formula for the
exact current response as a nonlinear function of field:

V~ X= —E J(X)/kliT (4) J(B,E)=—(v) + =pE „(vva E(t))odr . (7)
follows, with J(X)=g;=~v; —N and with a correction of
relative order unity neglected. Remarkably, the expres-
sion E J(X) has the form of "force" times (microscopic)
"flux, " which is identical to the form of entropy produc-
tion in phenomenological thermodynamics. It is this cru-
cial relation that, in our opinion, is the important feature
of Gaussian dynamics which accounts for its successful
representation of the steady state. In our simple example
with A' =1 the identification of "temperature" —accord-
ing to the above prescription —as the nonfluctuating ki-
netic energy of a single particle lacks physical justifica-
tion and, also, fails to satisfy the crucial Eq. (4). There-
fore, we here define "temperature" as twice that value,
i.e. , ka T = 1/P =p /m, just so that the equation
V~ X= —E.v/ksT analogous to Eq. (4) still holds.

We now present our results for the case iV=1, using,
however, a slightly diff'erent form than that in which they
are rigorously obtained [8]. For the mathematical proofs
we must consider a discrete-time description of the sys-
tem in which time is counted by a number of successive
collisions of the particle with scatterers, a so-called spe-
cial representatron of the flow. It is only in the discrete-
time representation that we can presently obtain the good
decay of correlations for Eq. (6) or (8) below, for exam-
ple.

First, we show that starting from any probability distri-
bution fo(X)dX on the three-dimensional phase space, a
unique ergodic measure p+ is obtained by evolving for-
ward in time. This result is obtained at least when E and
8 are suSciently small and the condition of finite horizon
holds for zero field. Furthermore, there is a very simple
integral formula for the average (p)+ of any continuous
function p(X) in this stationary state. For a formal
derivation, note that the average of p at time r —starting
from an initial constant ensemble density fo(X) =C—is

given by a simple calculation to be

This is an example of a so-called Kawasaki formula for
the nonlinear response [10] and it describes a variety of
phenomena, including the usual Hall effect o'f transverse
electric currents in a magnetic field. The response to
linear order in the field is then given by

(p) + =(p)p+ pE ' (v(Ii(Xg 0(r ) )&0 dr

+higher order terms in E .

To prove this rigorously correct we establish a bound on
the decay in t of (vp(Xa E(t)))0 uniform in E, which al-
lows standard convergence theorems to be applied to
show that the remainder term is really of higher order in

E. This is not just a fine point of rigor but is exactly
~here dynamical properties enter in the derivation of the
transport law. From Eq. (8) one obtains directly Ohm's
law J(B,E) =ca(8) E+higher order, with the conduc-
tivity tensor o(8) given by

a OO

cr(8) =P J (vvii p(t))pdt,

a usual Kubo formula for the conductivity [11]. The for-
mal linear response calculations given above can be made
quite generally, and suggest that the integrable decay of
the Green-Kubo formula (uniformly in the mechanical or
thermodynamical force) is the necessary and sufficient
condition for validity of the standard linear transport law
[12]. Since the diffusion matrix D(B) describing the
mean-square deviation of test particles from their expect-
ed motion in zero electric field can be shown to be given
also by a Green-Kubo formula

P+OO
D(B) =—

g (vva, p(r ))pdr

(generalizing that for 8=0 in [3]), we obtain immediate-
ly also a (generalized) Einstein relation

(p), =(p)0+pE. (vp(Xii E(s)))ods, (s) 8(B)=p D(B), (10)

where (P), is the average with respect to the ensemble
density at time t. For clarity the B,E dependence of the
phase trajectory X(t) under the dynamics is explicitly in-
dicated. Under the stated assumptions, we show that (p)&
converges to (p)+ as t +~, and, furthermore, the in-
tegrand on the right-hand side of (5) has sufficiently good
decay so that the limit t + ~ may be taken there. We
obtain finally

f+ OO

(y)+ =(p&0+ pE „(vy(Xa E(r)))odr .

While such expressions for steady-state measures have

where 8 denotes the symmetric part of a. Note that the
p appearing here comes directly from the formal defini-
tion of T in (4): That relation is the key.

To prove the above results we show that the dynamical
system may be very well approximated by a certain sto-
chastic Markov chain. This approximation is obtained by
means of a so-called Markov sieve [13]. The method of
proof can be viewed as a realization at a sophisticated
mathematical level of the "stochastization" of a dynami-
cal particle system by a "coarse graining" of the phase
space. Rather than folio~ the detailed trajectory in the
phase space, one may consider just the transition of the
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phase point from cell to cell of the coarse-graining parti-
tion under successive time steps.

In the context of the Gaussian method there is a very
remarkable relation, noted in [5], which arises between
the time derivative of the Gibbs entropy, the Lyapunov
exponents of the dynamics, and physical entropy produc-
tion; see also [7]. We can rigorously establish this rela-
tion [using the definition of temperature which comes
from Eq. (4)], as we briefly indicate here. First, with the
usual definition of Gibbs entropy, S(t) = —kzj fi(X)
&Inf, (X)dX, where f& is the ensemble density at time r

It is a simple calculation that S(t) =kg ff, (X)(V~.X)
xdX= —kii(g)t. Using Eq. (4) we can therefore infer
that

—S(t) k (g)+=J.E/T

as t +~, where the right-hand side is just the entropy
production due to Ohmic dissipation. This can be under-
stood if one imagines that the Gaussian dynamics model
the effect of reservoir elements on the particle system, for
which the total system, reservoir+particles, obeys the
Liouville theorem. Hence, the decrease of particle entro-

py corresponds to the increase of reservoir entropy, and
the latter represents the physical entropy production.
This result gives some support, in fact, to the interpreta-
tion of Gaussian dynamics as an adequate model for the
efl'ects of a heat bath (at least, as discussed above, for
large IV). It does not constitute a proof that this is so,
which would require a derivation of the dynamics in some
sense from a microscopic model of a thermal reservoir.
However, other more traditional methods, e.g. , represen-
tation of reservoirs by stochastic boundary conditions,
have never been derived either from a microscopic model
and all the methods rest upon some intuitive ideas that
they should be "adequate" to represent the interaction
with a heat bath. It is certainly interesting to compare
the different methods with each other, and, as much as
possible, with real steady-state Aows, to verify that they
are physically equivalent and lead to the same results.

On the other hand, the divergence of the dynamical
vector field can also be related to the rate of change of
Liouville volume in the phase space. It is heuristically
obvious that the steady-state expected rate of volume
contraction should be equal to the sum of the stable and
unstable Lyapunov exponents A, g E (0 and Xg E )0 of the
flow, defined and almost surely constant with respect to
the ergodic measure p+. In our case this can be proved,
and we obtain the relation

S(r )—kg (k—n E+x) E)

for t +~. Putting together the two expressions for the
asymptotic decay of Gibbs entropy we obtain finally the
relation

E J/T = —k|i (kg, E+kg E),
which directly relates entropy-production and Lyapunov

exponents. In the limit E 0, this yields also a relation
between diffusion coeScient and Lyapunov exponents of
the Gaussian dynamics with respect to p+: e D(B) e
=limp p kgT (A, ii E+A,g E)/E (where e is the unit
vector in the direction of E). Such relations are believed
to also extend to other more complicated many-particle
situations [14].

Since it is known that 0 & 0, it follows from the rela-
tion like Eq. (11) that the Gibbs entropy starting from an
initially smooth distribution has an asymptotically con-
stant rate of decrease. Therefore, one expects S in the
stationary state p+ to be —~, and, in particular, that
p will be singular with respect to Liouville measure po,
i.e., it will have a support with fractal dimension less than
3, which is the dimension of the energy surface [5,7]. In

fact, we can show, in agreement with the numerical re-
sults [5,15], that this is indeed the case. More precisely,
we can show that Young sfor'mula for the Hausdorfl'di-
mension (DH) of the measure is valid [16] (see also
[17]). This states that

in which h =X is the dynamical Kolmogorov-Sinai entro-

py of the flow defined by Eqs. (1)-(3). (The equality
h =1," is called Pesin's formula [17].) Using the relation-
ship between Lyapunov exponents and transport
coe%cients, it then follows that for small E

E cr(B) E/T
DH (P B,E) +higher order corrections .

kghg 0

(i 4)

In particular, it follows that DH(p+) ( 3 when F- is small

but finite.
Although no rigorous or reliable numerical results are

available for many-particle systems, we do not expect
that this "dimensional reduction" will persist in an exten-
sive sense at least in those systems where the particles are
in a state of local equilibrium. That is, in the appropri-
ate "hydrodynamic limit" for such systems in which par-
ticle number and volume both go to infinity, we expect
the ratio of the Hausdorff dimension and phase-space di-
mension to go to unity, just because the system is then

composed of small "local equilibrium regions" in which
the distribution is (nearly) given by an absolutely con-
tinuous Gibbs measure. It should be noted anyway that
the phenomenon of "dimensional reduction" is a property
just of the representation of thermal reservoirs by Gauss-
ian dynamics, and can be proved not to occur, for exam-

ple, with suitable stochastic representation of heat baths
[18]. On the other hand, we would not be surprised if the
dimensional reduction per degree of freedom persists in

the infinite volume limit —for the stationary measures of
Gaussian-type dynamics —in those situations where local
equilibrium breaks sown, e.g. , ~here the velocity distribu-
tion is not close to a Maxwellian. This would be the case
for current-carrying electrical conductors. For some fur-
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ther discussion, see [19]. The stationary measures p+ we
construct here, although singular with respect to Liouville
measure, have the property that they are smooth in the
unstable directions of the How. The property is clearly
evidenced in the computer simulations of the density
found from the time sampling of phase points, which
shows a concentration along the unstable manifolds; see
[5]. This property implies, in particular, the smoothness
of the reduced measures for the system, e.g. , the position-
al density or the probability density of the x component
of the velocity. In fact, the measure p+ is just a particu-
lar case of the so-called Sinai-Ruelle-Bowen measures for
our hyperbolic system, constructed previously for smooth
systems (e.g. , see [17]).

All of the formal arguments given above extend to the
general N-particle model and lead to the reasonably ex-
pected results, so that we expect our theorems hold also
in the general case. Unfortunately, because of the lack of
strict hyperbolicity for the many-particle case, we cannot
rigorously study by our method the small-field perturba-
tion in those models. On the other hand, we have for this
model a rigorous proof of the validity of linear response
theory —despite the fact that the dynamics of individual
trajectories are sensitively dependent upon the presence
or absence of the field. Therefore, our work can be re-
garded as a counterexample to some of the objections
raised by van Kampen against linear response theory
[20]. For a fuller discussion of this point we refer to our
longer work [8], in which the proofs of the main proposi-
tions announced here are also given.
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