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Nonlinear Wave Evolution in the Expanding Solar Wind
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We report here on a numerical model allowing direct numerical simulations of magnetohydrodynamic
fluctuations advected by the expanding solar wind. We show that the expansion of the plasma delays
and possibly freezes the turbulent evolution, but that it also triggers the nonlinear evolution of otherwise
stable (Alfven) waves, which can thus release their energy in the wind.

PACS numbers: 96.60.Vg, 52.30.—q, 52.65.+z, 96.50.Bh

The sun is the source of a radially expanding superson-
ic Aow, the solar wind, which reaches its cruise speed
after some tens of solar radii. The dynamic evolution of
imbedded Auctuations has been generally considered from
two independent and apparently opposite viewpoints:
nonlinear (or turbulent) and linear (wave propagation in

an expanding medium). However, both kinds of interac-
tion have to be considered together if we are to under-
stand the main observational and theoretical problem
which justifies much of the interest for solar wind tur-
bulence: how and when the Auctuations release their en-

ergy in the (expanding) plasma during transport. We
propose in this Letter a framework to understand both
nonlinear and linear interactions and consider the specific
example of finite amplitude plane waves; the results ob-
tained indicate that the dynamics of MHD turbulence is

drastically modified by the expansion of the plasma.
The question of turbulent dissipation in the solar wind

may be described as follows. On the one hand, the cool-
ing of the plasma with distance, which basically follows
the adiabatic prediction for a radial expansion with con-
stant speed (temperature cc R ) is observed to be
slower in fast streams, where the wave Aux is important
[1]: this seems to indicate "turbulent" heating. On the
other hand, in the frequency range where nonlinear
transfer could have time to take place, Auctuations
("Alfvenic waves") resemble freely propagating waves,
i e., nonlinear interactions seem to be much reduced
[2,3]. Nonetheless, the spectra of the fluctuations evolve
with distance, a clear indication that nonlinear interac-
tions are at work [2]. To understand how a nonlinear
cascade may take place, we solve the full nonlinear mag-
netohydrodynamic equations in an expanding mean Aow.
This may be viewed as a continuation of the early work
by Tu, Pu, and Wei [4], who first studied this problem us-

ing the simplifying assumptions of small scale incompres-
sibility, isotropy, and a dimensional estimate of nonlinear
in teract ion s.

Simulating turbulent dissipation within, say, the inner
heliosphere using an absolute frame of reference is costly
in terms of computer memory and time. We bypass this

difhculty by using a coordinate system moving with the
average Aow speed: the whole computer memory is hence
available for small-scale (turbulent) dynamics, as in stan-
dard homogeneous simulations. A first possibility is then
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FIG. 1. Sketch of the evolution of a plasma volume advected
by a spherical wind with constant speed. (a) Exact evolution,
(b) approximate evolution in the limit of small angular size, and
(c) transformation of a parallel wave (kll80) into an oblique
wave.

to use a spherical coordinate system r, 8, & centered on

the sun and assuming a constant radial mean velocity:
U =U e„; adopting the comoving radial coordinate
r'=r —R(t), where R(t) =R +U r is the average La-
grangian heliocentric distance at time t, the MHD equa-
tions may be integrated within ir'i (I /2, i&i ( a/2, iaaf( a/2. We prefer, however, to use the simpler Cartesian
coordinates; this is acceptable provided the box is small
enough, i.e. , a«1 and L /R«1. Consider a Cartesian
frame with x axis parallel to the radial passing through
the middle of the box, change to the Galilean frame mov-

ing with the mean wind along this radial [x'=x —U r

=x —R(r)]. In the new frame, the mean velocity has a
residual x component O(a ) which we neglect, and a
transverse [O(a)] component U~ with maximum value
6U =aU /2 which we retain, so that the mean velocity
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reduces to

U& =SU[(2y/L a)ey+(2z/L a)e, J =a/a(ye~+ze, ) .

I a is the transverse size of the box, which grows linearly
with time, a being the aspect ratio a(t) =R(t)/R =I
+Ut/R, where R is the initial heliocentric distance.
Within this approximation, an initially cubic box is uni-

formly stretched in the transverse directions and becomes
a parallelepiped [Figs. 1(a) and 1(b)]. By moving to ex-
panding "comobile" coordinates t =t, x =x', y=y/a(t),

and z =z/a(t), we eliminate the transverse advection
terms of the form U~ V. This has the advantage of al-
lowing periodicity of all fields, density p, pressure P, mag-
netic field 8, and velocity fluctuation u, in the transverse
comobile coordinates; since the thickness of the box is

small, we also assume periodicity in the radial (x) direc-
tion. Omitting dissipation terms, the equations take the
form of standard MHD equations, with additional linear
terms involving the mean velocity U& appearing in the
right-hand side:

Bu/Bt+u Vu —B VB/p+V(P+B /2)/p= —(u V)U = —a/a'11' u,

BB/Bt+u VB —B Vu+Bdivu= —BdivU +(8 V)U = —a/aE. B,
BP/Bt+u VP+ yPdivu = —yPdivU = —2@a/aP,

Bp/Bt+div(pu) = —pdivU~ = —2a/ap;

V=[B/Bx, (i/a)B/By, (I/a)B/BZ], lxl, lyl, lzl ~ L'/2

The last line gives the expression of the derivative opera-
tors in terms of comobile coordinates, and y=5/3 is the
polytropic index. The matrices Y and IL are defined as
T~ =T'6~ , L~ =L'8~. , with T'=(0, 1, 1),L'=(2, 1, 1); they
represent an anisotropic friction, which is in the trans-
verse direction for the velocity fluctuation and in the radi-
al direction for the reduced magnetic field B=B/J(p),
where the average density falls as (p) =p /a (t) ~R
[which corresponds to the conservation of mass, since
the box volume grows as a (t)]. The magnetic fiux is
conserved during the expansion, since (B)„ccI/a, (B)z
~ (8), ~ I/a: the mean field thus rotates in the x-y plane
(cf. Parker's spiral [5]). In the absence of dissipation, the
average temperature (T=P/p) falls as (T) ~a
~R, as expected. For small amplitude Alfven
waves, i.e., transverse velocity and reduced magnetic fluc-
tuations b =B—B (with constant pressure and density)
superposed on a mean radial magnetic field B =[B (t),
0,0], Eqs. (I) become

Bu/Bt —(B /a) Bb/Bx = —a/au,

Bb/Bt —(B /a)Bu/Bx =0. (2)

In the limit of high frequencies, the eigensolutions of (2)
are the "homogeneous" solutions z+ =0 and z =0
(where z —=u+ b), which propagate in opposite direc-
tions along B . When only one species (say z +) is

present, Eq. (2) implies that the energy decays as in the
WKB approximation: z+ = u = b = I/a ac 1/R(t)
Hence Eqs. (1) contain all the known linear scaling laws
with heliocentric distance.

In the general (nonlinear) case, the expansion-induced
friction delays nonlinear interactions, by reducing the
fluctuation amplitude Bu, since the typical time scale is of
the order r~L= L /(2tr8u), —where L is the typical wave-

length. Moreover, the expansion causes an increase of the
transverse wavelength, and so leads to an additional slow-

down. We obtain an exact result concerning the slow-
down in the extreme case of purely transverse velocity
fiuctuations u(y), with B=0,P=O, which are described
by (v being the viscosity)

Bu/Bt + ( I /a ) u Bu/By = v( I/a )B u/By —(a/a )u,

Iy I
(L'/2

We take 6u as unit velocity, and the nonlinear time as
unit time; the aspect ratio is a(t) =I+et, where e
=rNLU/R = 6U/(tt6u) is the parameter measuring the
relative importance of expansion and nonlinear terms [4].
In the homogeneous case e =0, Eq. (3) reduces to
Burgers equation: an initial smooth velocity profile
steepens and forms a shock with thickness proportional to
v. I n the limit of vanishing viscosity v, the energy
remains approximately constant before a shock forms,
and subsequently decays as Bu /Bt = —u /L so that
u = 1/t . The change of variables w(y, 0) =au(y, t),
with 0=t/a(t), reduces Eq. (3) to the homogeneous
Burgers equation: Bw/B0+ wBw/By = vB w/By . At short
times, 0= t, w =const and the only evolution is the
WKB decrease, here u = I/R; later on, the velocity
profile steepens, but shock formation never occurs if the
stretching factor e is larger than unity. In that case, the
energy decays uniformly as I/R . If e ( I, the energy de-

cays as u = 1/(t 0 ) = 1/R for I (t ( I/e. The im-

portant point is that since u (y, t ) = (1/a) w (y, 0) and

0(t) I/e when t ~, the asymptotic wave form is

given by the homogeneous solution w frozen at the finite

time I/e, and decays self-similarly as 1/a(t).
This conclusion may not apply strictly to more general

situations, where the wave vectors have a nonzero com-
ponent along the radial direction, which suA'ers no
stretching: The wave vector will then turn towards the
radial [61 [Fig. 1(c)], which is likely to decrease the
efticiency of the freezing eA'ect. The case of Alfven-like
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FIG. 2. Evolution of the energy content in circularly polar-
ized Alfven waves vs heliocentric distance R (arbitrary units) in

the expanding wind.

Auctuations, which are often observed to dominate in the
solar wind, provides an interesting example. Large am-
plitude circularly polarized Alfven waves (constant densi-

ty, magnetic and thermal pressures; u=b, z =0) propa-
gating along the magnetic field are exact solutions of the
homogeneous M H D equations. However, in a radial
wind, this holds only in the singular case of radial mag-
netic field and wave vector. Indeed, although there ap-
pears at finite frequency a nonzero z component of or-
der z /z+ =divU/8k8 = (a/4)b™/8 [7,8], the cou-
pling between z and z+ remains zero. When k is not
radial, the initially parallel wave (kllB ) transforms into
an oblique wave, because the mean field B turns away
from the radial, while the wave vector on the contrary
tends to align with the radial. In such an oblique wave,
the pressure is no longer constant, so that the Alfven
wave steepens and a (one-dimensional) nonlinear cascade
occurs.

We study the nonlinear evolution of a monochromatic
circularly polarized Alfven wave (b=u) in two versions:
(a) a parallel case [klIB, with (k, e„)=45 l, and (b) an

oblique case, for which k and 8 are not aligned from the
start [we will take for simplicity a radial B, (k, e„)
=45 ]. In case (b), the magnetic pressure is initially
modulated, which triggers a nonlinear evolution even with
a=0 [9]. We take an Alfven Mach number M~ =b' '/
8 =0.5, and e= r NLU/R =0.3, and Mach numbers
M =u' '/c=0. 3 and 0.75 (c being sound speed) which
corresponds respectively to a low p (=0.25) and high p
(=1.7) plasma (the first case being more common in the
solar wind [3]). The evolution is followed for 8 nonlinear
times, the heliocentric distance R(t) =R (I+et) thus in-
creases by a factor of 3 (say from 0.3 up to 1 AU). Time

is advanced via the Adams-Bashforth method, a pseudo-
spectral method is used. Small scale dissipation is
achieved by standard molecular viscous terms: The large
scale viscous time is about 250 nonlinear times, i.e., dissi-
pation is negligible at energy containing scales (as re-
quired to compute turbulent dissipation), resolution is
A =1024 grid points.

Figure 2 shows the evolution of "energies" E-
=(z —) /2 in the wave: The main (+) component fol-
lows first the R ' WKB law, but departs from it as soon
as the z component becomes significant, which occurs
earlier for the oblique case, as expected. Note that E
reaches levels largely above the linear prediction men-
tioned above, which is here E /E + = (e/8) = 1.4
x 10 . The waves evolve into both compressive and ro-
tational discontinuities. Figure 3 shows, for the parallel
case with M =0.75, the profile of the normalized
velocity-magnetic field correlation cr, =(E+ —E )/(E+
+E ) (o., =l initially). The sharp step in o, which

25' &J

20
se

10

0
&J

15
10

ParaIlel case
(Ma=0. 5, a=0.3)

0
2 t. 4time 6 8

FIG. 4. Evolution of mean square current J with time for
circularly polarized Alfven waves.
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FIG. 5. Evolution with heliocentric distance of the "norrnal-
ized temperature" R '+3(P)/P, showing deviation from the adi-
abatic decay.

forms (visible at i=5 and 8) corresponds essentially to a
left-propagating fast compressive mode, while the dip
(just right of the step at t =5) coincides with a rotational
discontinuity. Note that the global decrease in o,
remains limited, as a, (r =8) =0.86. Although the ex-
pansion causes nonlinear steepening of the initially paral-
lel wave (significantly only when M =0.75), its main
eAect is to delay the evolution of oblique waves. This is
apparent by comparing, for the expanding and nonex-
panding oblique cases, the growth of the mean square
current (top of Fig. 4), which is an indicator of energy
transfer to small scales: The current maximum is
reached in a longer time when v=0.3 than when a=0,
and its magnitude is also smaller. We also show for com-
pleteness the growth of mean square current in the paral-
lel case (bottom of Fig. 4). The growth of current (as
well as of the velocity gradients) in turn leads to a "tur-
bulent" heating which makes the temperature decay
slower than the R adiabatic law (see Fig. 5, where
the temperature evolution is normalized to adiabatic).
The heating is negligible for the parallel case with
M =0.3, but quite a significant departure from adiabatic
is seen for M =0.75, both for the parallel and oblique
cases.

Our results on oblique waves and also on the simple
case of Burgers equation thus indicate that in general the
nonlinear cascade of turbulence to small scales is delayed
and possibly asymptotically frozen. However, even when

starting from a parallel circularly polarized Alfven wave,
we obtain at M=0.75 and M~ =0.5 enough small scale
excitation and thus enough heating to significantly reduce
the temperature decrease with distance as compared to
the adiabatic. The fact that the nonlinear decay of
Alfven waves of solar origin release a significant amount
of heat only at large Mach number is reminiscent of the
solar wind situation: higher Mach numbers are indeed
observed within fast streams [3] which also show a less
than adiabatic decay [1]. On the other hand, we also ob-
tain a larger z component when the Mach number is
high, which is contrary to the observations [3]. This may
be related to initial conditions near the sun [2], but may
also have a dynamical origin, related to the large scale ve-
locity and magnetic shear structures which are not taken
into account here (see [10]). It will be interesting to in-
corporate these large-scale velocity shear within the ex-
pansion: this will necessitate two- or three-dimensional
simulations of Eq. (1), at high enough resolution to ob-
serve turbulent dissipation.

The authors are grateful to P. Londrillo and U. I risch
for stimulating discussions, and to the Conseil Scienti-
fique du Centre de Calcul Vectoriel pour la Recherche
for providing computer facilities.

[1] J. W. Freeman, Geophys. Res. Lett. 15, 88 (1988).
[2] A. Mangeney, R. Grappin, and M. Velli, in Advances in

Solar System Magnetohydrodynamics, edited by E. R.
Priest and A. W. Hood (Cambridge Univ. Press, Cam-
bridge, 1991), pp. 326-356.

[3] R. Grappin, M. Velli, and A. Mangeney, Annal. Geophys.
9, 416-426 (1991).

[4] C. Tu, Z. Y. Pu, and F. S. Wei, J. Geophys. Res. 89, 9695
(1984).

[5] E. N. Parker, Space Sci. Rev. 4, 666 (1965).
[6] H. J. Volk and W. Alpers, Astron. Space Sci. 20, 267

(1973).
[7] M. Velli, R. Grappin, and A. Mangeney, Phys. Rev. Lett.

63, 1807 (1989).
[8] J. V. Hollweg, J. Geophys. Res. 95, 14873-14879

(1990).
[9] F. Malara and J. Elaoufir, J. Geophys. Res. 96,

7641-7656 (1991).
[10] D. A. Roberts, S. Ghosh, and M. L. Goldstein, Phys. Rev.

Lett. 67, 3741 (1991).

2193


