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Instabilities of a Propagating Pulse in a Ring of Excitable Media
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Instabilities in the circulation of a pulse in a ring of excitable cardiac tissue are analyzed using two
different formulations: (1) a reaction-diffusion partial differential equation (PDE) model for cardiac
electrical activity using the Heeler-Reuter equations to represent ionic currents in the cardiac cells;
(2) a neutral delay-differential equation that we propose as a model for the PDE. Stability analysis
and numerical simulation of the delay equation agree with results from simulations of the PDE
model.

PACS numbers: 87.10.+e, 05.45.+b, 87.22.As

At the turn of the century, Mines demonstrated that
a ring of cardiac tissue could sustain a continually cir-
culating wave of contraction [1]. This landmark achieve-
ment has formed the cornerstone for both experimental
and theoretical studies of wave propagation in excitable
media [2—10]. Understanding the dynamics of these sys-
tems has not only provided a significant theoretical chal-
lenge, but it is fundamental to our understanding of life-
threatening cardiac arrhythmias in which the rhythm of
the heart is set not by the normal pacemaker, but by
reentrant excitation of the sort envisioned by Mines.

Although there has been extensive theoretical analysis
of the propagation of reentrant spirals in two-dimensional
excitable media [6—10], there are fewer results about wave
propagation in a ring of excitable media [3, 9]. Recent
experiments in rings of cardiac tissue have shown that
steady circulation of a depolarization pulse can be desta-
bilized by reducing the circulation time around the ring
[2]. This loss of stability is associated with oscillations
in pulse duration and recovery time, where the recovery
time is the time interval between the end of an excitation
pulse and the onset of the following one. Similar instabil-
ities have been observed in partial differential equation
(PDE) models [4) upon decreasing the ring circumfer-
ence, and studied theoretically in a discrete model [3].

In the following we present a theory for instabilities of
pulse circulation in a continuous one-dimensional ring of
excitable media. We present results from simulations of
a nonlinear PDE model for pulse propagation in cardiac
tissue, using the Heeler-Reuter equations [11] to repre-
sent the electrical properties of the cardiac cells. The
dynamics of the PDE can be understood in the context
of a neutral delay-differential equation whose derivation
is based on the physical mechanisms controlling pulse
propagation.

%'e simulate electrical pulse propagation in a one-
dimensional ring of cardiac tissue, using a simple forward
Euler method [12] to integrate the equation
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where V is the membrane voltage (mV), IBR is the mem-
brane current obtained from the Beeler-Reuter equations
(pA cm ), 1 = 1.0 pF cm is the membrane capac-
itance, S„=5000 cm is the surface-to-volume ratio,
and p = 0.2 kA cm is the tissue resistivity. The Beeler-
Reuter equations [11]describe eight variables used to cal-
culate the total membrane current IpR. The equations
are frequently used as a model in cardiac electrophysiol-
ogy [4, 5, 8].

A circulating pulse is obtained by first stimulating the
proximal end of a long cable to obtain a propagating
pulse. As the excitation approaches the distal end of the
cable, its two ends are joined numerically into a ring. Af-
ter the circulating pulse stabilizes, the ring circumference
is decreased in successive steps until steady circulation
becomes unstable and oscillations in the pulse dynam-
ics arise. We use —60 mv as our threshold between the
recovered state (V ( —60 mV) and the excited state
(V ) —60 mV). The recovery time is defined as the in-
terval between the onset of an excitation pulse and the
end of the previous pulse. We consider the evolution
of the recovery time t„, the pulse duration A, the pulse
speed C, and the circulation time T as a function of the
location x along the ring.

From our numerical simulations of Eq. (1), we find
that the transition between stable and unstable circu-
lation occurs between ring lengths L = 13.425 cm and
I = 13.25 cm. For L = 13.425 cm we find stable circula-
tion with t„- 112 ms. For L = 13.25 cm we find oscil-
lations in the speed, recovery time, pulse duration, and
circulation time. The wavelength A of the oscillations
is slightly less than twice the ring length, A = 26.0 cm.
Figure 1(a) shows a trace of t„(2;) for L = 13.25 crn. Be-
cause the wavelength is not exactly twice the ring length,
the dynamics of the recovery time at a fixed location
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along the ring are quasiperiodic. Figure l(b) displays a
time series for t„ss a function of the number of rotations
around the ring. These results agree qualitatively with
experimental observations by Frame [2] in living cardiac
tissue. Pulse circulation in the PDE model is no longer
supported upon decreasing the circumference of the ring
from L = 12 cm to L = 11.875 cm.

Given a pulse circulating around a ring, using the
quantities A(x), t„(x), and C(x), we obtain

t„(x) = s —A(x —I ). (2)

This "conservation" equation must hold for any x since
it is a mathematical statement of the simple relation "re-
covery time = circulation period —pulse duration. " The
central assumption of our theory is that both the pulse
duration and speed are functions of the recovery time t„.
Although there is no a priori justification for this assump-
tion, it is common in the analysis of cardiac propagation
[2, 3, 5, 6, 9]. In Fig. 2 we plot pulse duration and speed
as functions of t„, based on data from the simulation in
Fig. 1. The oscillations in recovery time shown in Fig.
1(a) are accompanied by oscillations in pulse duration
and speed. We can measure all three quantities at each
location x along the ring and plot the relations between

I IG. 1. Dynamics of a circulating pulse in a ring of length
L = 13.25 cm found from numerical integration of the Beeler-
Reuter equations. (a) Recovery time t„ss a function of the
location x along the ring. The wavelength is A = 26.0 cm. (b)
Recovery time t as a function of the number of turns around
the ring at a fixed location along the ring.

tr (ms)
FIG. 2. (a) Restitution curve a(t ) and (b) dispersion

curve c(t, ) derived from the PDE simulation of Fig. 1.

them. The curve a(t„) is called the restitution curve and
c(t„) is called the dkspersion curve In t. his case, both
curves are well-defined functions of t„. Given the resti-
tution and dispersion curves, we may rewrite Eq. (2) as

t„(x) = ds —a(tr(x —i)). (3)

Equation (3) is an integral-delay equation. It has a
steady-state solution t„(x) = t„*, where t„' satisfies t„* =
L /c(t. ) —a(t.).

We obtain a dynamical equation for t„(x) by taking
derivatives with respect to x in (3). Using t„:—t„(x) and
t« = t„(x —I ), we obtain

d„(t„+a(t„,)) = 1
(4)

This equation describes the evolution of the recovery time
t„as a function of the location 2: along the ring and

completely specifies the dynamics of the circulating pulse
once the initial value of t„ is specified on the ring domain.
Equation (4) is a neutral delay-differential equation [13],
whose appearance in this context constitutes a novel as-
pect of our analysis.

Equation (4) is integrated using a simple forward Euler
method, subject to the constraints imposed by the ring
geometry. To satisfy these requirements, we use a nu-
merical discretization [14] that makes our finite-difference
scheme identical to the discrete model of propagation in
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