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Current density-voltage characteristics are presented for a molecular structure of the form
metal/organic-multilayer/metal for which the rectifierlike forward bias current density dependence is
unequivocally associated with zwitterionic molecules. By placing passive organic barriers between the
metal layers and the active molecules we prove that Schottky barrier eAects are not important. This is
the clearest evidence so far for molecularly controlled rectification, the basis for molecular electronics.
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FIG. 1. Chemical composition of C|6H33 yQ3&NQ.

For almost two decades, since the seminal publication
of Aviram and Ratner [1], there have been attempts to
demonstrate that a suitably designed organic molecule
deposited in a layer between two electrodes would give
current density-voltage characteristics analogous to the
behavior of a p-n junction. Such a demonstration consti-
tutes a major advance in molecular electronics and
bridges the gap between molecular structure and macro-
scopic electronic device behavior. Continuing from the
work of Geddes et al. [2,3], electrically rectifying proper-
ties have been reported for such structures [4] using a
monomolecular Langmuir-Blodgett film of a zwitterionic
molecule, Ct6H33 yQ3CNQ [S] (the structure of which is

shown in Fig. 1), between platinum and magnesium elec-
trodes. The electrical conduction mechanism may be
conjectured to follow the Aviram and Ratner model with
the forward bias behavior composed of resonant (elastic)
electron tunneling from the Mg anode to the quinolinium
cation (D+) and from the phenyldicyanomethanide anion
(8 ) to the Ag cathode followed by a reversion to the
z~itterionic ground state via intramolecular inelastic tun-
neling, while under reverse bias, a high energy barrier to
the D2+ x 2 2 state limits the electron How:

Mg/D+ tr 2/Ag M-g/-D -tr-A /Ag

Mg/D+ -tr-A /Ag .

It is, however, clear that this may not be the only inter-
pretation of the experimental observation of asymmetric
conduction and thus these observations were not sufhcient
proof that the rectification is solely a molecular process.
Interaction between the electrodes and the molecular
headgroup producing a rectifying interfacial region is,
clearly, an alternative explanation for the asymmetric
J/V curves [6,7]. In the present study we introduce for
the first time passive organic spacer layers, m-tricosenoic
acid multilayers, between the active molecules and the
metal electrodes. The use of m-tricosenoic acid layers to
space the metal from the rectifying molecule prevents
Schottky barrier eAects and thus provides conclusive evi-
dence that the rectifierlike characteristics are attributable
to molecular processes.

Initially, simple metal/Langmuir-Blodgett multilayer/
metal (M/LB/M) junctions were fabricated using a simi-
lar planar geometry to that used by Geddes et al. [8-10].
They reported that e-tricosenoic acid multilayers inter-
posed between silver and magnesium electrodes exhibited
J/V characteristics which were nonlinear at larger ap-
plied biases, obeying ln(J) ce V'/ for junctions of four
monolayers thickness or less and In(J) tx: V'/ for more
than six monolayers. All the J/V data were symmetric
with respect to the sense of the applied bias and, there-
fore, act as a convenient comparison for our subsequent
work in which direction of the bias is important. It is

partly for this reason and also because it is chemically
relatively inert and has no oxide barrier that silver was
chosen as the base electrode material. This base elec-
trode was formed by thermal evaporation of 99.99% pure
silver onto a thoroughly cleaned Aame-polished glass
coverslip. With minimal delay the LB film was trans-
ferred onto this fresh metallic surface. This was accom-
plished using a solution of C|6H33 yQ3CNQ in Aristar
grade dichloromethane spread on a subphase of ultrapure
water. The film transfer rate was 0.1 mms ' at a sur-
face pressure of 25 mNm ' using a rectangular single-
compartment TeAon trough. The transfer ratios indicat-
ed a Z-type LB film (headgroups oriented towards the
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FIG. 2, Schematic of sample fabrication.
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FIG. 3. Current density-voltage curve from a Ag/7 mono-
layers of Ci6H33-yQ3CNQ/Mg junction. The voltage sweep
rate is set at 44 mVs

substrate). A two-week dessication period was found to
be essential for the removal of residual water before the
thermal deposition of the top electrode. Magnesium has
once again been used as the top electrode material since it
minimizes damage to the organic film during electrode
deposition [4]. Filled figure-8-shaped magnesium elec-
trodes, of area 0.78 mm, were deposited at an apparent
rate of —0.5 nms ' to an apparent thickness of 200 nm.
Because of the unpredictable nature of magnesium depo-
sition, these numbers only represent upper limits for film
deposition [I 1]. Following this, two circular silver pads
were deposited onto the center of the annular limbs of
each magnesium pad without breaking the vacuum.
After removal from the vacuum, two electrical contacts
were made to the base electrode using silver paste and
two contacts to each magnesium/silver electrode estab-
lished using GaIn eutectic droplets placed on each silver
pad and into which fine gold wires were lowered. The
four contacts made to each junction permitted continuity
checks to ascertain that good electrical contact was made
to both the base and magnesium electrodes. A schematic
of the sample geometry is shown in Fig. 2. A triangular
voltage signal of chosen period and voltage sweep rate
was applied to the M/LB/M junction and the current
passed was measured using an electrometer. Applied
voltages are typically less than 2 V, which corresponds to
maximum electric field strengths in the order of 10
V m ' within the organic film.

Rectifierlike characteristics have been observed in all
junctions of the type M/Ci6H33 yQ3CNQ/M, lower
thickness junctions (including monomolecular junctions)
having been described in a previous publication [4].
However, these data are confused by the competition of
other conduction processes and high noise levels. The use
of thicker () 5 monolayer) junctions avoids these prob-
lems. Figure 3 shows one complete J/V cycle measured

from 7 monolayers of Ci6H33-yQ3CNQ. Not all of the
cycle shown is suitable for further analysis due to capaci-
tive charging currents which flow after reversal of the
voltage sweep and which contribute significantly to the
current when sweeping away from the voltage extrema.
To avoid artifacts from these transient eAects only those
regions of the curve taken from zero and moving to an ex-
tremal applied voltage were used for analysis. These gave
the following relationships. The highly enhanced forward
bias behavior was found to conform closely to J—Jo
=aV +bV and is, as yet, unexplained. Reverse bias be-
havior followed ln(l —lti) ee V, which suggests a Poole-
type conduction with Poole center separation roughly cor-
responding to a single molecular length. The experimen-
tal data fitted the above relationships extremely well
across the whole range of applied bias and gave unambi-
guous determinations of the difIerent dependences. In
Fig. 3 the reverse bias has not been increased su%ciently
to observe a strongly nonlinear response. However, when
this is done the curve retains the In(/ —lo) ~ V depen-
dence and clearly illustrates that the conduction asym-
metry cannot be accounted for by a simple shift along the
voltage axis which might be proposed due to using elec-
trode metals of diff'ering work functions. A range of volt-
age sweep rates was studied to discover if this influenced
the results. It was found that at a 4 times faster sweep
rate the capacitance loop significantly distorts all the
data. However, for the sweep rate reduced by factors of
2 and 4 the influence of the capacitance loop is propor-
tionately reduced; the dependences of the J/V trace from
0 V to extrema are invariant. Thus we may safely con-
clude that the above J/V dependences represent steady-
state measurements.

Having characterized the J/V relationships for these
junctions, we now have to establish whether they are
molecular in origin. First, the Ci6H33 yQ3CNQ film
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