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Viscoelasticity in Dense Hard Sphere Colloids
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We present a new microscopic theory for the frequency (ro) and density (p) dependent complex shear
viscosity t)(p, c0) of dense hard sphere colloids near equilibrium. The predictions are in good agreement
with experimental results for silica spheres dissolved in cyclohexane.

PACS numbers: 83.50.Fc, 03.40.—t, 83.10.Ff

Recently, a number of measurements have been per-
formed to determine the viscoelastic behavior of a series
of typical dense monodisperse colloidal systems consisting
of neutral silica hard spheres with various diameters o.

dispersed in cyclohexane [1]. One measures the complex
shear viscosity t)(p, co) as a function of the frequency co of
a small oscillating externally applied velocity disturbance
at volume fraction &=trna /6 with n =N/V the number
density of A colloidal particles in a volume V. One finds
that t)(p, co) depends on ll) (but not on the particular value
of a) while the dependence on co is very similar for all

high densities 0.3 & tl) &0.6. In fact, at each p one ob-
serves a very smooth transition of the complex shear
viscosity t)(lt, to) from its initial value t)($,0), which is

real, to its (real) final value t)(p, ~), which is much
smaller than t)(&,0) and roughly of the order of the
viscosity t)p of the pure solvent. The initial value t)(&,0)
for m =0 of the viscosity strongly increases with increas-
ing p and is many times larger than qp, as can be seen in

Fig. I, where the experimental values of t)(tl), 0)/t)p [1,2]
are plotted as a function of ll). For large frequencies co

one finds that both the real part Retl(p, co) and the imagi-
nary part Imt)(p, co) of q(p, co) decay to their final asymp-
totic values proportional to co ' with the same
coefficient. One has for to ~ [1]

R, g(~ ) —g(~") =I g(y ) —q(~. -)
g(lt o) —q(lt, ) q(y o) —q(lt, )

3~2[ (
2K

where the phenomenological time zt(ll)) is determined
from experiment. The experimental results for zt(p)/z~
are given in Fig. 2 as a function of p. Here
= (a/2) /Dp is the so-called Peclet time with Dp
=ktt T/3tzripa the Stokes-Einstein diffusion coefficient, ktt
the Boltzmann constant, and T the temperature. Thus,
z~ is the time a free colloidal particle needs to diftuse
over a distance o/2 in the solvent. For concentrated col-
loids, z~ is of the order of the "interaction time, " i.e., the
time a colloidal particle needs to interact with its neigh-
bors. Furthermore, it appears from experiment that the
reduced complex viscosity [t)(p, co) —

rl (tl), ~) ]/[t) (p, o)

ri(y, g, co) =t)p+ — drg(r, y, to)y
1 n BV(r)
2 y" Bx

(2)

where r=( yx, z) is a vector with length r, g(r, y, co) is

the pair correlation function of the Quid under shear
(y&o, co&0), and V(r) is the pair interaction potential
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FIG. 1. Reduced viscosity t)(&,0)/tip as a function of p for
silica spheres in cyclohexane [1,21: squares, a =92 nm; trian-
gles, a= 152 nrn; circles, n =220 nm. Full curve is from theory
IF.q. (9)I.

—t)(p, ~)] as a function of toz~(p) is virtually indepen-
dent of the density p. This is shown in Fig. 3, where the
real and imaginary parts of the reduced viscosity are plot-
ted as a function of coz t (ltt) for all 0.3 & ll) & 0.6.

To our knowledge no microscopic theory is available at
present to understand these experimental results. Here
we discuss a new but approximate theory for the visco-
elastic behavior of dense neutral colloids of hard spheres
based on direct (pair) interactions between the colloidal
particles only. We start from the more general viscosity
t)(y, ll), co) of colloids when the externally applied velocity
disturbance has both an oscillatory contribution (with
I'requency co and very small amplitude) and a constant
contribution in time [with shear rate y =Bu„(y)/By,
where u, (y) is the IIuid velocity in the x direction which
only depends on y]. Then t)(lt, tp) =t)(y=0, &, co), where
the limit y=o will be taken at the end. For ri(y, p, co) one
has for low densities and general (realistic) interactions
[3-S]
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FIG. 2. Reduced relaxation time ri(p)/ rras a function of p
for silica spheres in cyclohexane [I]: squares, o =56 nm; trian-

gles, a =92 nm; circles, o =152 nm. Full curve is from theory
[F.q. (14)].

between two colloidal particles at distance r. Equation
(2) has been discussed in Ref. [5] for p 0, to=0, and
Debye-Hiicke] (shielded Coulomb) potentials V(r). We
extend Eq. (2) to hard spheres and high densities using
the mean spherical approximation [6], i.e., we replace
V(r) in Eq. (2) by V(r) = —kttTC(r) with C(r) the
direct correlation function of hard spheres in equilibrium
(y=0, tp =0). The spatial Fourier transform C(k) of
C(r) is C(k) = [S(k) —I]/nS(k), where S(k) is the
static structure factor of the hard sphere colloidal parti-
cles in equilibrium. Using these results we can write Eq.
(2) in Fourier representation as

kg T ~ k„ky S'(k )
r)(y, y, tp) =rip+ dk 2 BS(k, y, cu),

16rr'y k S(k)'
(3)

with k =(k„,k~, k, ) a wave vector with length k, S'(k)
=t)S(k)/r)k, and 6S(k, y, to) =S(k, y, cp) —S(k), where
S(k, y, tp) is the static structure factor of the suspension
under shear (y&O, co&0) given by

S(k, y, tp) = I+n drexp(ik r) [g(r, y, to) —I] . (4)

In Eq. (3), the distortion BS(k, y, cu) of the static struc-
ture by the shear satisfies the balance equation [3-5]

—yk —i to+ 2tpH (k ) 6S(k, y, cp)'ek

= yky S(k),
X

where tpH(k) is the decay rate of equilibrium fluctuations
in the density of colloidal particles for times t of the order
of rp, i.e., (t &rp)

W'

F(k, t ) =—g (exp[ik [r;(0) —rz(t )]&p

=S(k)exp[ —tpH(k)t] .

Here rz(t) is the position of colloidal particle j at time t
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and the brackets denote an equilibrium ensemble average
(y=0, cp =0). F(k, t) is the equilibrium intermediate dy-
namic structure factor and can be obtained experimental-
ly by dynamic light scattering [7]. Its Fourier transform
in time is the dynamic structure factor S(k, tp) [with
half-width coH (k )] which is experimentally accessible
through neutron scattering.

The balance equation (5) has been derived from the
Smoluchowski equation by Dhont, van der WerA, and de
Kruif [Ref. [5], Eq. (3.11)] for co =0 and low densities p,
where tpH(k) =Dpk . A low density theory for r)(p, cp)
similar to that of Dhont, van der WerA', and de Kruif has
been discussed by Cichocki and Felderhof [8]. For high
densities 0.3 & p &0.6 we use Eq. (5) with ra&0 and
tpH(k) defined by Eq. (6). It appears from experiments
that for high densities and the reduced wave numbers
kcr) 1, relevant here, tpH(k) can be represented very
well by [7,9-11]

D k
(7)

~S(k) [I —J.(k~)+2J, (k~)] '

where Jp(x) and Jq(x) are the spherical Bessel functions
of orders 0 and 2, respectively, and g=g(cr) is the value
of the pair correlation function g(r ) =g(r, 0,0) at contact
in equilibrium (y=0, to =0).

Thus we arrive at a set of equations for rI(y, p, tp), i.e. ,

Eqs. (3), (5), and (7), which we will now solve for y 0.
In that case Eq. (5) yields

6S(k, y, tp) = yky [2cpH(k) —itpl +O(y ) . (8)t)S(k )
X

tuH(k) =

FIG. 3. Reduced complex shear viscosity rt(g, to) as a func-
tion of cori(p). The data points refer to silica in cyclohexane
[1] (0.3 & P & 0.6). The full curves are from theory for P =0.4,
0.5, and 0.55 [Eq. (9)l (hardly distinguishable).
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Substituting this result in Eq. (3), taking the limit y 0,
and performing trivial angular integrations in k space,
our final result for q(p, co) = q(y =O, p, co) becomes

kBT "
4 S'(k)

ri(y, co) =rip+
~ „dk k

60~' "p
1

2coH(k) —ico
'

(9)

First, we note that the k integral is convergent for all m

since the integrand vanishes for k 0, while for large k
(k- -)

~ (k) = k'[i+O(k-')l, (io)

S(k) =1 —24&@ [1+O(k )],J, (kcr)
ko.

S'(k) =24/@ [1+0(k ')],J,(l ~)
k

(i2)

Thus, Eq. (1) follows immediately, with

25
18rr'y'g'

(14)

This theoretical result for rl(p) is in reasonable agree-
ment with experiment, at least below &=0.55 as can be
seen in Fig. 2.

Finally we calculate rt(p, co) numerically from Eq. (9)
as a function of co for p =0.4, 0.5, and 0.55. We find that
the reduced complex viscosity [q(p, co) —ri(p, ~)l/
[ri(y, o) —ri(p, ~)] as a function of cor ~(p) is indeed vir-
tually independent of p. Theoretical results, shown in

Fig. 3, are in excellent agreement with experiment.
We conclude therefore that the approximate theory

presented here [cf. Eqs. (3) and (5)] captures the basic
mechanisms relevant for the viscoelastic behavior of

and J„(x)—x ' for x ~. Therefore, the second term
on the right-hand side of Eq. (9) vanishes for co ~, so
that, according to the theory, g(p, ~) =gp. Second, we
remark that Eq. (9) implies that ri(p, co)/rip is a function
of p and cor~ only [because S(k) is a function of p and
kcr alone].

We have evaluated Eq. (9) for ri(p, co) and co=0 nu-

merically, using Eq. (7) for coH(k ) and the Percus-
Yevick expressions for S(k ) and g = (1+P/2)/(I —P)
[12]. The theoretical result for g($, 0)/rip, shown in Fig.
1 as a function of p, describes the experimentally ob-
served strong increase of g(&,0) with increasing p quite
well.

The large k behavior of S(k) [=I, cf. Eq. (11)],S'(k)
[from Eq. (12)], and coH(k) [from Eq. (10)] induces in

Eq. (9) for ri(p, co) a square root singularity for large co,

i.e., for m

ri(p, co) =rip+ —,
' p'g' 'gp(tort ) ' '(I +i)+O(co ') .

dense neutral hard sphere colloids up to about & = 0.55.
We end with a number of open questions and remarks.

(i) One observes in Fig. 2 a sudden increase in el(p)
when p) 0.55 which is not predicted by the theory. This
is possibly related to the fact that near the glass transi-
tion (&= 0.6), F(k, t) in Eq. (6) decays extremely slowly
for very long times t)) r~, with a decay rate much small-
er than coH(k) of Eq. (7), which describes F(k, t) in the
liquid phase for t(rz [7]. It follows straightforwardly
from Eqs. (9), (13), and (1) that when coH(k) in Eq. (5)
is replaced by coH(k)/a (with a) I a scaling factor),
r 1(p) in Eq. (I) will increase' (—a' ) with increasing
a) 1. Thus, lower decay rates coH(k) of F(k, t) cause
higher relaxation times z~(p) in rt(p, co), so that the sud-
den increase in r 1(p) might signal the onset of the glass
transition. (ii) The present theory is based on Eq. (5) de-
rived for the pair correlation function from the Smolu-
chowski equation in the absence of hydrodynamic in-

teractions. This implies that, theoretically, ri(p, ~) =gp
for all p as noted below Eq. (12). However, experimen-
tally one finds that q(p, ~) slowly increases from qp at
&=0 to about loqp at &=0.55 [1,13]. Up to about
&=0.4, the observed behavior of ri(p, ~) agrees rather
well [1] with the low density theory of Beenakker [14] in

which hydrodynamic interactions are included. Thus, it
would clearly be important to develop a theory similar to
that presented here, which includes hydrodynamic in-
teractions. (iii) For monatomic dense fluids of hard
spheres with diameter o. and mass m, expressions have
been derived for the viscosity qh, (p, co) [15-17], which
are very similar to those presented here [i.e., Eqs. (3),
(5), and (6)]. The equilibrium viscosity rih, (&,0) at co =0
is then given by [17]

' 2

, S'(k)
rihs(p, o) =rip+

2 6
dt „dk k

60rt2 "6" "o S k

xexp[ —2coH(k)t] .

(is)

Here gz is the Enskog shear viscosity, tF is the mean free
time between collisions, and the decay rate coH(k) of
F(k, t) is defined as in Eq. (6). coH(k) is given by Eq.
(7) with Dp replaced by Dg =0.216(k~ T/m ) ' ncr,
the Boltzm ann value of the self-dift'usion coefficient,
tE =(m/rckoT) ' /4ncr g, and gF/rttr =(1+3.2pg
+ 12.18$ g )/g where rett =0.179(mktr T) 't /cr is the
Boltzmann value of the viscosity.

We note the remarkable similarity of the second terms
on the right-hand sides of Eq. (9) (with co =0) and Eq.
(15). In fact, they are equal when the lower limit 6tE in

the time integral of Eq. (15) is replaced by zero. Equa-
tion (15) for qh, (&,0) leads to a strong increase in

rih, (&,0) with increasing p, similar to that shown in

Fig. 1 for colloids. Moreover, in particular one finds that
rih, (&,0)/rid = ri(&, 0)/rip. We note that both terms on
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the right-hand side of Eq. (15) contribute to the increase
of tih, (&,0)/tltt with the first term given by rIE/ritt, while
the second term contributes significantly for p )0.45
only. Similarities in the (viscoelastic) co behavior of
tih, (p, co) for dense hard sphere fluids and tI(p, co) for con-
centrated hard sphere colloids have not been studied so
far.

We acknowledge very useful discussions with Dr. R.
Schmitz and Dr. J. K. G. Dhont. One of us (E.G.D.C.)
acknowledges support by DOE Grant No. DE-FG02-88-
ER 13847.

[I] J. C. van der Werff, C. G. de Kruif, C. Blom, and J.
Mellema, Phys. Rev. A 39, 795 (1989).

[2] J. C. van der Werff and C. G. de Kruif, J. Rheol. 33, 421
(1989).

[3] G. K. Batchelor, J. Fluid Mech. 41, 545 (1970).
[4] D. Ronis, Phys. Rev. A 34, 1472 (1986).
[5] J. K. G. Dhont, J. C. van der Werff, and C. G. de Kruif,

Physica (Amsterdam) 160A, 195 (1989).
[6] J. P. Hansen and I. R. McDonald, Theory of Simple

Liquids (Academic, London, 1986).
[7] P. N. Pusey, in Liquids, Freezing, and Glass Transition,

Proceedings of the Les Houches Summer School, Session
LI, 1989, edited by J. P. Hansen, D. Levesque, and J.

Zinn-Justin (North-Holland, Amsterdam, 1991).
[8] B. Cichocki and B. U. Felderhof, Phys. Rev. A 43, 5405

(1991).
[9] E. G. D. Cohen, I. M. de Schepper, and A. Campa, Physi-

ca (Amsterdam) 147A, 142 (1987).
[10] P. N. Pusey, H. N. W. Lekkerkerker, E. G. D. Cohen,

and I. M. de Schepper, Physica (Amsterdam) 164A, 12
(1990).

[11]E. G. D. Cohen and I. M. de Schepper, J. Stat. Phys. 63,
241 (1991).

[12] N. K. Ailawadi, Phys. Rep. 57, 241 (1980).
[13] W. B. Russel, D. A. Saville, and W. R. Schowalter, Col-

loidal Dispersions (Cambridge Univ. Press, Cambridge,
1989), p. 468.

[14] C. W. J. Beenakker, Physica (Amsterdam) 128A, 48
(1984).

[15] T. R. Kirkpatrick, J. Non-Cryst. Solids 75, 437 (1985).
[16] T. R. Kirkpatrick and J. C. Niewoudt, Phys. Rev. A 33,

2651 (1986).
[17] E. G. D. Cohen and I. M. de Schepper, in Recent

Progress i n Many -Body Theories 3, edited by T. L.
Ainsworth, C. E. Campbell, B. E. Clements, and E.
Krotscheck (Plenum, New York, 1992), p. 387; in Slow
Dynamics i n Condensed Matter, First Toh wa U niversity
International Symposium, Fukuoka, Japan, edited by K.
Kawasaki, T. Kawakatsu, and M. Tokuyama (American
Institute of Physics, New York, 1992), p. 359.

2181


