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Berry's Phase and the Magnus Force for a Vortex Line in a Superconductor
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We show that the existence of the Magnus force is a general property of a vortex line in a supercon-
ductor by calculating the Berry phase for an adiabatic motion around a closed loop at zero temperature.
We find that there is no inhuence of the disorder and the electromagnetic field on the existence of the
Magnus force in the superconducting state, and its magnitude is proportional to the superfluid electron
density.

PACS numbers: 74.20.—z, 03.40.6c, 74.60.6e

The motion of a vortex line plays an essential role in

the understanding of many properties of superconductors
[1]. The problem of the existence of the Magnus force
acting on a single moving vortex line in a superconductor
is, however, an unsolved one [2]. The advance in the past
decade in material science makes it possible to perform a
quantitative study of dynamical eA'ects such as the quan-
tum decay of supercurrent [3), the Hall effect [4], and
the anomalous Hall effect [5] in a superconductor. Be-
cause of its important role played in those eAects, the
problem of the existence of the Magnus force has gained
a renewed interest recently [3-61. The argument for the
existence of the Magnus force was first advanced by
Friedel, de Gennes, and Matricon [7]. However, the op-
posite conclusion that there is no Magnus force in a su-
perconductor was reached by different authors [8,9]. It
was pointed out by Bardeen [8] that there is an error in

the argument of Friedel, de Gennes, and Matricon [7].
Interestingly, both points of view seem to have substantial
experimental support. By noting that in experiments one
must consider the details of pinning and friction, this con-
troversial issue was resolved by Nozieres and Vinen [10].
They found that a proper account of those details renders
practically no difTerence between the two opposite
theories in the explaining of available experiments at that
time. Nevertheless, Nozieres and Vinen [10] endorsed
the existence of the Magnus force by applying the classi-
cal ideal quid results to a superconductor. In addition to
this argument for the existence of the Magnus force, it
has been shown that if the time-dependent Ginzburg-
Landau (TDGL) equation takes the form of the non-
linear Schrodinger equation there will be a Magnus force
[6]. Although the Magnus force is believed to be a gen-
eral property of a vortex line [11], none of the above
known phenomenological arguments in favor of the ex-
istence of the Magnus force for a vortex line in a super-
conductor is satisfactory.

Because there is no well-controlled microscopic deriva-
tion of the TDGL equation near zero temperature, any
conclusion about the Magnus force based on a TDGL
equation will be questionable. In fact, convicting results
based on different forms of TDGL equations exist [3,6,9].
The argument of Nozieres and Vinen [10] is not only

phenomenological, but is also valid only in the clean and
extreme type-II superconductor limit, where there is no
disorder and the inhuence of the electromagnetic field is

negligible. As in a superconductor a quantized magnetic
flux is always associated with a vortex line and the disor-
der normally exists, the argument of Nozieres and Vinen
[10) is particularly unsatisfactory. Because of the lack of
a microscopic derivation of the Magnus force and a clear
treatment of the inhuence of the disorder and the elec-
tromagnetic field, the doubt on the existence of the
Magnus force still exists [2]. Given the important role

played by the Magnus force in numerous eA'ects in a su-

perconductor [3-5], as well as important consequences
associated with the Magnus force such as the Kelvin

mode, the circular vibration along a vortex line [7], a
clear answer to the important question of the existence of
the Magnus force is needed. The purpose of the present
paper is to provide such an answer at zero temperature.
In this paper we find that the existence of the Magnus
force is a general property of a vortex line, and is not
influenced by the presence of the disorder and the elec-
tromagnetic field. In the following, we give a microscopic
derivation of the Magnus force by calculating the associ-
ated Berry phase for an adiabatic motion.

For clarity we consider a two-dimensional supercon-
ducting film at zero temperature. The film is taken to be
in the x-y plane, at rest in the laboratory frame. The ar-
gument can readily be generalized to the three-
dimensional case. If the film is nonuniform, the energy of
the vortex may depend on its position. Initially we take
the large ~ limit in which the modification of the magnet-
ic field by the vortex is negligible.

We exploit the analogy between the motion of a quan-
tized vortex in a superAuid film and the motion of the
guiding center (the instantaneous position of the center of
its cyclotron orbit) of' a charged particle in a plane per-
pendicular to a strong magnetic field on which there is

some varying potential energy V(X, V), but the argument
can be developed without the use of this analogy. The
mass of the charged particle is decoupled from the guid-
ing center motion. The guiding center moves along equi-
potentials at a speed proportional to the potential gra-
dient, so that the average Lorentz force balances the

2158 1993 The American Physical Society



VOLUME 70, NUMBER 14 PH YSICAL REVIEW LETTERS 5 APRIL 1993

with q the charge of the particle and h the Planck con-
stant. This is 2x times the number of flux quanta en-
closed by the loop.

The motion of a vortex can be described in similar
terms. A vortex moves under the combined influence of
the superfluid velocity fields produced either externally or
by other vortices and of its position-dependent potential
energy, so that the Magnus force, given by the vector
product of the vorticity and the motion relative to the
superfluid, balances the external force due to inhomo-
geneity of the film (pinning centers). The classical La-
grangian contains both the inhomogeneity potential and a
term linear in the velocity of the vortex, and the wave
function has both a dynamical phase and the Berry phase
which is the integral of the linear term. The Berry phase
round a closed loop is 2z times the number of supercon-
ducting electron pairs enclosed by the loop. In both of
these examples a total derivative can always be added to
the linear term in the Lagrangian (and to the Berry
phase) without changing the equations of motion; the in-

tegral round a closed loop remains invariant.
Both the dynamical phase and the Berry phase [12] as-

sociated with a vortex in a superconductor can be calcu-
lated from the many-body wave function which describes
the state of a vortex. Let idio(r~, . . . , rjv) be the many-
body wave function of the superconductor in the absence
of a vortex, either for the ground state or for some non-
equilibrium state with a nonzero superfluid velocity distri-
bution v, (r). Here N is the total number of electrons and

[r~J are the positions of electrons. The many-body wave
function is antisymmetrized and is normalized to unity,
j+j~=~ d rz~@0~ =l. According to the work of London
[13],with the correction made by Brenig [14] to account
for the Cooper pairing in the superconductor, the desired
many-body trial wave function +,, for a vortex at position
ro is

~ rJv'ro)

jv

=exp —g O(r~ —ro) 0'0(ri, . . . , rjv, ro),E

2 j=l (2)

where O(r) =arctan(J/x) and +0 is close to No, with
modifications to describe the reduction in superfluid den-
sity near the vortex core, correlations induced by the flow
pattern further from the core [15], and various other

external force. The classical Lagrangian contains both
—V(X, Y) and a term linear in the velocity, and the
wave function has a phase which consists of two parts:
the dynamical phase which is the time integral of
—V(X, V)/6, and the Berry phase [12], which is the
path-dependent integral of the linear term. The Berry
phase 46 round a closed loop is proportional to the mag-
nitude of the magnetic field 8 and the area 5 enclosed by
the loop projected in the direction of the magnetic field,

Ae =2x(q/h )BS,

eftects. It is normalized to unity as well as antisym-
metrized. The fact that the phase 0 is divided by 2 is the
manifestation of the Cooper pairing in a superconductor.
We note that a similar form of the many-body wave func-
tion to describe the vortex state in the case of superfluid
helium has been used [16,17], where +0 is instead sym-
metrized.

The dynamical phase associated with the vortex corre-
sponds to the extra energy it carries. For the case in
which &0 is the ground state this can be written as

dt„d rp(r, ro)[VO(r —ro)l (3)2m"
where m is the electron mass. The superfluid electron
number density

p(r, ro) =p, (r)+Sp(r, ro) (4)

is the sum of its value p, in the absence of the vortex and
the modification due to the presence of the vortex. For a
nonuniform system the value of this integral depends on
the position of the vortex, and so gives rise to a potential
energy of the vortex, whose gradient gives the pinning
force. In the presence of an initial superfluid flow field in

@0 there is an additional term

dtJ~d rp(r, ro)[VO(r —ro)] v, (r) (5)

in the dynamical phase.
If the vortex position ro moves adiabatically along a

path I, the Berry phase Ae, , is [12]

p(r, ro)
ae, , (r) = — d'r dro [V„O(r —ro)] (7)

We substitute Eq. (4) for the superfluid density into this.
The contribution of Bp to the Berry phase is a finite con-
stant for the closed loop larger than the size of the vortex
core and for our present purpose it can be ignored. If the
background superAuid density p, is constant, from Eq.
(7) we find the Berry phase for a closed loop as follows:

we, , (r) = —2~(p, /2) s (r),
with 5 the area enclosed by the loop 1. We note that the
Berry phase is 2n times the total number of supercon-
ducting electron pairs enclosed by the loop. This gives
the result argued on classical grounds, and is directly
analogous to Eq. (I) for electrons in a strong magnetic
field, with the number of flux quanta replaced by the
number of superconducting electron pairs.

The Magnus force is obtained from the derivatives of
the two parts of the phase linear in the displacement of
the vortex core, given by Eqs. (5) and (8). Taken togeth-
er these give
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Ae, , (I ) = —Im dro'(4', , ~V P,, ) .

Performing the same calculation as in the cases of
superfluid helium [18] and the fractional quantum Hall
effect [19],we find the Berry phase as
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F =q, , (v, —ro) &zh

with q, , =1 ( —1) for a vortex parallel (antiparallel) to
the z direction and ro the vortex velocity. This is identi-
cal to the one in classical fiuid dynamics [11]. We em-
phasize that the Magnus force explicitly depends on the
number density instead of the mass density of e1ectrons.
The eA'ect of the lattice has been included through its
efl'ect on the value of p, .

In the absence of disorder p, is constant, this is the
only force on the system, and it must be zero, so that the
vortex moves with the local superfluid velocity. In the
presence of disorder, at zero temperature, the Magnus
force must balance the pinning force. At higher tempera-
tures the presence of frictional forces acting on the vortex
must also be taken into account [10].

In the above derivation we have actually only used the
following two basic facts: the single valuedness of wave
function and the finite density of the superfluid electrons.
Those two facts are well represented by the many-body
wave function of Eq. (2). The details of the many-body
wave function are irrelevant here. This observation sug-
gests that the result of Eq. (8) should have a much wider
valid regime than the above neutral case in the clean lim-
it. We here demonstrate that Eq. (8), and therefore Eq.
(9), are indeed valid in the case of finite homogeneous
disorder, and later we shall show that it is also valid in

the real superconductor with the eAect of the electromag-
netic field. If the disorder is not extremely strong, the su-
perconducting state exists at zero temperature [20]. A
many-body wave function @0 can again be used to de-
scribe the superconducting state without a vortex, al-
though it is profoundly influenced by the disorder. Then
the many-body trial wave function %",, of the form of Eq.
(2) can still be used to describe a vortex state. In the
presence of finite disorder some electronic states, a frac-
tion of Cooper pairs, will become localized [20] and will

not be able to contribute to the supercurrent. The
superfluid electron density p, is then decreased. By al-
lowing the superfluid electron density to be disorder
dependent, we reach the conclusions that the Magnus
force in the form of Eq. (9) remains unchanged in a dirty
superconductor and its magnitude is reduced because of
the reduction of the superfluid electron density by disor-
der.

Now we consider the real superconductor by putting
the coupling to the electromagnetic field back into the
problem. The many-body wave function +,, of Eq. (2) is
still the correct description of a vortex state in the pres-
ence of the electromagnetic field [13,14]: It is obviously
single valued. Starting from it we can calculate the elec-
tric current, then the magnetic field according to
Maxwell's equations, and find the magnetic flux associat-
ed with the vortex to be the magnetic fiux quantum hl2e.
Therefore, performing exactly the same calculation lead-
ing to Eq. (9) we find that the Magnus force remains un-
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changed. In an infiuential review article [21] the first
term on the right-hand side of Eq. (9) is called the
Lorentz force, and the second term the Magnus force.
VVhile the so-called Lorentz force is generally accepted,
the second term is not [2]. The present demonstration
shows that both terms exist and the physics behind them
is the same: the dynamical and Berry phases for an adia-
batic motion of a vortex. It also suggests that the name
Lorentz force used in Ref. [21] is improper because the
Magnus force is not a consequence of electromagnetic
eflects on a vortex.

Although the electromagnetic field has no eA'ect on the
Magnus force, we make one comment concerning its sub-
tle eA'ect on the many-body wave function of a vortex. As
the vortex moves adiabatically along a closed loop, be-
cause of the magnetic flux associated with it, an addition-
al phase will be picked up according to the Aharonov-
Casher effect [22] if there is any electric charge inside
the loop. However, because of the charge neutrality of
the system, the Aharonov-Casher phases from electrons
and the background will completely cancel each other,
and no influence on the Magnus force will be found.
Nozieres and Vinen [10] also reached the conclusion of
no influence from the electromagnetic field on the
Magnus force. However, as we have pointed out in the
second paragraph, they assumed the condition of the ex-
treme type-II superconductor limit. Consequently, they
found that the influences both from electrons and back-
ground are negligible, not the cancellation found here.
On the other hand, the complete cancellation between the
contributions to the Magnus force from electrons and the
positive background for an adiabatic motion of a vortex
has been pointed out by Bardeen [8] by using Faraday's
law. Ho~ever, he reached the incorrect conclusion that
there is no Magnus force by treating the Magnus force
incorrectly as an electromagnetic force.

The foregoing general demonstration would suggest
that the Magnus force also exists for a vortex line in a
normal Fermi liquid. While this is formally correct, it is
not well enough defined to discuss it in a normal Fermi
liquid because there a vortex state is highly unstable. In
a superconductor the vortex state is instead very stable
because of the presence of the condensate [23,24].
Therefore vortices in a superconductor behave as stable
particles, which is essential for the present discussion of
the Magnus force.

In summary, starting from the many-body wave func-
tion description of a vortex in a superconductor at zero
temperature, we have derived the Magnus force by the
calculation of the Berry phase when a vortex moves adia-
batically along a closed loop, in analogy to the case of a
charged particle in the presence of a magnetic field. We
are able to show that the existence of the Magnus force
relies only on two basic properties of a superconductor:
the existence of the superconducting state and the single
valuedness of the many-body wave function. Therefore
we have found that the existence of the Magnus force is
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insensitive to the details of the system and its magnitude
is proportional to the superfluid electron density.
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