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Jumps in Electronic Conductance Due to Mechanical Instabilities
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Using an exact single-particle scattering formalism we have carried out the first calculation of the con-
ductance of a metallic contact, on the basis of a full dynamic simulation of the evolution of its atomic
structure. We find that the contact area evolves discontinuously through a series of mechanical instabili-
ties, which is reflected in a stepwise variation of the conductance also seen in recent experiments. Impor-
tantly, we find that the conductance is not simply proportional to the size of the contact and, therefore,
the conductance per atom is not constant.

PACS numbers: 72. 10.8g, 73.40.Jn

The scanning tunneling [I] and atomic force [2] micro-
scopes have recently been adapted to produce a number
of ingenious point contact experiments. The purpose of
these experiments is to study the electrical conduction
characteristics of a contact between a tip, often of nano-
meter dimensions, and a surface. The electronic conduc-
tance has been measured throughout the approach and
formation of the contact [3,4], the growth of the contact
[5], or while a contact is slid along the substrate surface
[6]. During the approach and formation of the contact
the electronic conductance is observed to jump discon-
tinuously [3,4]. This has been attributed to the "jump-
to-contact" phenomenon in which the tip-substrate sys-
tem becomes mechanically unstable at a critical separa-
tion [7]. As the contact grows the conductance is found
to increase in steps [5]. During sliding [6] the conduc-
tance variations are due to the periodic changes of the
atomic topology of the contact.

In all previous theoretical treatments [8] of the conduc-
tance problem no account has been taken of the dynami-
cal evolution of the atomic topology of the contact, while
the evolution of the size and shape of the contact has
been considered only via unrealistically simplified geom-
etries.

In this Letter we report the first calculation of the evo-
lution of the conductance of a metallic contact on the
basis of a full dynamic simulation of its atomic structure.
We find that the contact area evolves discontinuously
through a series of mechanical instabilities, which is the
origin of the stepwise variation of the conductance that is
found in our simulations and that has already been seen
in point contact measurements [5]. Moreover, we find
that the conductance per atom in the contact varies dur-
ing contact growth.

In our dynamic simulations a metallic tip is brought
into contact with a substrate of the same metal and is
then pulled off. The atomic interactions are described by
an N-body potential [9] which has the form of a long-
range Finnis-Sinclair potential [10]:

r ' m 1/2'
—eg (1)

i j~i riJ i j &i rij

Here, r;j is the distance between atoms i and j, e, m, and
n are parameters that have been fitted to ten fcc metals in
[9], and a is the respective fcc lattice constant. The di-
mensionless parameter c is determined by the equilibrium
condition for the perfect fcc crystal. The potential is
truncated at r;J =2.001a, which means that in a perfect
fcc crystal there are 140 interacting neighbors to a given
atom. As shown in [9] the long range interaction be-
tween the tip and substrate in Eq. (1) is a sum of inverse
power pair potentials, —I/r, which are van der Waals
potentials if m =6. As the tip approaches the surface this
interaction is transformed smoothly into the full N-body
Finnis-Sinclair form, thereby describing metallic bonding
[9].

Previous simulations [11,12] of contact formation and
fracture for a variety of fcc metals have all shown the
same mechanical behavior at a given homologous temper-
ature. Therefore, the choice of metal for the present
model calculation is not critical, and the particular set of
parameters chosen is that for iridium. Thus, m =6, n
=14, a=2.4489x10 eV, a =0.384 nm, and c =334.94
[9].

Figure 1 shows the geometry and boundary conditions

FIG. 1. Schematic illustration of the use of periodic bound-
ary conditions to simulate tip-surface interactions. The em-
boldened cell is repeated in three orthogonal directions.
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used to model the interaction between a paraboloidal tip
and substrate [11,12]. The tip in the computational cell
is attached to the underside of the slab. The slab
comprises six (111) fcc planes and contains 1836 atoms.
The tip, which has the same crystal structure and orienta-
tion as the slab, comprises initially eight (111) layers,
and contains 207 atoms. The lowermost "layer" of the
tip contains only 1 atom, while the layer above it contains
12 atoms, and the layer above that contains 19. By de-
creasing (increasing) the length of the cell normal to the
slab the tip is moved closer to (further from) the upper
side of the slab in the image cell below. In this way all
atoms are treated dynamically, with no artificial inter-
faces between dynamic and static regions. The variation
of the cell length is achieved by applying a homogeneous
uniaxial strain to the contents of the cell. This strain lo-
calizes and becomes inhomogeneous naturally through
the dynamical motion of the atoms. The Newtonian
equations of motion are integrated via the velocity Verlet
algorithm [13],and a Nose-Hoover thermostat is applied
[12] to all atoms in the cell to maintain the average tem-
perature at 300 K. The time step is 10 ' s.

Initially the tip and slab are equilibrated for 1050 time
steps, during which the tip is not interacting with the sub-
strate below. The distance between the tip and the sub-
strate below is then set to 2.007a (i.e., there is still no in-
teraction between them at this separation) and the cell
length normal to the slab is decreased at a rate of
0.0015a per time step for 2150 time steps. A significant
contact area is established during this time. The tip is
then pulled oA' the substrate by increasing the cell length
at the same rate for 3000 time steps. The velocity of the
tip, about 60 m/s, is small compared with the speed of
sound in the material (4900 m/s). Therefore, although
the velocity of the tip is much greater than is found in ex-
periments (e.g. , [5]), it is sufficiently small to allow the
structure to reequilibrate between successive instabilities.

At each of the 5150 time steps of the dynamic simula-
tion, following the initial equilibration, the set of atomic
coordinates for the tip is used explicitly for computing the
conductance of the respective configuration. In view of
the size and duration of the simulation the conductance
calculation must necessarily be a model calcu1ation em-
ploying the simplest possible basis set which allows the
relationship between atomic structure and metallic con-
duction to be traced. For this reason the electronic struc-
ture of the entire system is described by an orthonormal,
nearest-neighbor, 1s tight-binding model with zero on-site
energies, a band filling of one-half, and hopping integral
scaling calculated analytically [14] for ls orbitals on hy-
drogenic atoms. Thus the hopping integral H;~ between
atoms i and j is given by

1+az;,.
H; =2 '

exp[a(1 —z; )1,1+a 1J

where A is the hopping integral between nearest neigh-
bors in the perfect crystal, a is a dimensionless constant

(in this calculation a =4), and z;~ is the distance between
atoms i and j in units of the ideal nearest-neighbor sepa-
ration. This hopping integral is truncated for z;J ~ J2.

Periodic boundary conditions are not used for the con-
ductance calculation. Instead, we consider a single tip
between two semi-infinite crystals. The atomic positions
within the tip are those given by the simulation. The dis-
tortion of the slabs in the simulation is negligible com-
pared with that of the tip, as can be seen from Fig. 2.
Therefore, in the conductance calculation the slabs above
and below the tip are replaced by semi-infinite, perfect
crystals, labeled 1 and 2, respectively. We imagine that
the tip atoms are initially decoupled from each other and
from the substrate atoms. We then couple the tip atoms
to each other and to the substrate atoms by a coupling V,
whose matrix elements have the functional form specified
in Eq. (2). All on-site matrix elements of V are taken to
be zero.

In a recent single-particle scattering theory formula-
tion of the conductance problem [15], and in agreement
with [161, the zero-voltage, zero-temperature elastic con-
ductance g of the final, coupled system was shown to be
given by

g=(2e /h)4tr Tr[p~ (EF)t (EF)pz(EI)t(Ef)], (3)

where t (E) = V+ VG + (E)V, EF is the Fermi energy, and

p~ (E) and pz(E) are the density of states operators for
the respective initial substrates and are given by

pk(E) =(I/2~t ) [Gto (E) —Gko'(E)1, I =1,2. (4)

Here G~
—(E) and Gz —(E) are the Green's operators

for the respective substrates in the initial, decoupled sys-

FIG. 2. A snapshot (N =2730) of the dynamic simulation of
the tip in contact with the slab below. Note that the distortions
in the slab are small relative to those in the tip.
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FIG. 3. The conductance (in units of 2e /h) vs the iteration
number N of the dynamic simufation throughout the formation
and breaking of the contact.
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tern and G —(E) are the Green's operators for the final,
coupled system. (Superscripts + and —correspond to
retarded and advanced, respectively. )

The trace in Eq. (3) is taken in the orthonormal atomic
ls basis. The matrix elements of G~

—(E) and G2 —(E)
are obtained by a method described in [15], and those
of t(E) by solving the Dyson matrix equation [1 —V
xG +(E)]r(E)= V. The matrix element (G +(E));~ of
G +(E) between atomic basis states i and j is given by
(G 1

+ (E));J if i,j 6 substrate I, and (G2+ (E) );z if
i,j C substrate 2; 6;~/E if i,j 6 tip and zero otherwise.

Figure 3 shows the conductance (in units of 2e /h) as a
function of the iteration (time step) number N of the dy-
namic simulation, following the initial equilibration
which occurs for 1 ~ N ~ 1050. For 1050 & N ~ 3200
the computational cell length is being decreased, whereas
for 3200 & N ~ 6200 it is being increased, at the rate
specified earlier. Owing to the truncation of the hopping
integral the conductance is zero until substrate atoms
come within hopping range of tip atoms. This happens at
N =1784. After that the conductance rises as the bonds
between the single atom at the bottom of the tip and its
three neighbors in the substrate below strengthen. For
1940 ~ N ~ 2090, when, apart from thermal fluctuations,
there is a stable single atom contact, the conductance set-
tles at a value of 0.93+ 0.05.

Between N = 2100 and N = 2230 we see the first
mechanical instability in which the single atom at the
base of the tip is incorporated into the layer above, and
the number of layers in the tip is reduced by one. The
system becomes unstable in the sense that, once induced,
the structural rearrangement persists even if the change
in cell length is suspended. Now there are 13 atoms of
the tip in direct contact with the slab. During the rear-
rangement the conductance undergoes a sharp increase
and for 2300~ N ~ 2600 it settles at a value of 9.0
~0.3, giving a conductance per atom of 0.69+ 0.02.

The next instability occurs between N = 2650 and
N = 2750. The number of layers in the tip is again re-
duced by one, and the number of tip atoms in direct con-
tact with the slab becomes 25. Once again the conduc-
tance undergoes a sharp increase and for 2800 ~ N
~ 3000 it settles at a value of 15.20~0.5, yielding a
conductance per atom of 0.61 ~0.02. We see the onset
of one further reduction in the number of tip layers just
before the cell length starts being increased at N =3200.

Between successive sharp increases, the conductance
exhibits some small variation. This variation is due to
two factors: (i) thermal vibrations giving rise to random
fluctuations in the conductance, and (ii) the growing
compressive force promoting improved registry between
the tip and substrate atoms, which leads to a further
slight increase in the conductance between jumps.

The above observations indicate that the main factor
governing the conductance is the number of tip atoms in

direct contact with the substrate. However, the conduc-
tance does not vary linearly with this number. The varia-
tion in the conductance per atom is due to two indepen-
dent factors. First, even with a perfect geometry (i.e.,

when all bond lengths are equal to that in the perfect
crystal), the conductance for a given contact area de-
pends on the shape of the rest of the tip. Second, there is
interference between the single-atom contacts that make
up a multiatom contact. This phenomenon is best illus-
trated by a calculation discussed in [15] in which, using
the same tight-binding model as here, we showed that in

the limit of an infinite ideal contact between two fcc
(111) semi-infinite perfect crystals, the conductance per
atom is 0.81 (in units of 2e /h), whereas the conductance
of an ideal single-atom contact between these semi-
infinite crystals is unity.

Between N =3200 and N =6200 the tip is being pulled
olT the slab. As in our earlier simulations [11,12] frac-
ture does not take place between the lowermost layer of
the tip and the slab, but through the formation of a neck
within the tip. Mechanical instabilities are induced dur-
ing the elongation of the tip, each of which results in

the formation of a new layer in the neck region. This
is reflected in sharp decreases in the conductance at N
= 3500, 3900, and 4300. Beyond N = 4500 the neck be-
comes highly disordered and without a well defined layer
structure. Just before fracture, between N = 5300 and
N = 5600, the neck reduces to a single-atom width. Fi-
nally, when fracture occurs, a pile of tip atoms is left
behind on the slab.

We have found that once mechanical contact has been
established, the value of the hopping decay rate a [see
Eq. (2)] modulates the size of the thermal fluctuations in

the conductance, but does not aAect the general features
of the conductance curve.

We emphasize that the mechanical instabilities, which
manifest themselves as the generation or loss of tip layers,
and the resulting discontinuities in the conductance, are a
general feature of atomic scale contacts, even though the
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particular abrupt rearrangements and conductance jumps
depend on the initial structure of the tip.

In conclusion, first we have shown that an atomic scale
metallic contact evolves through abrupt structural
changes, which lead to abrupt changes in its conductance.
Second, the main factor controlling the conductance is

the area of the contact while perturbations of the internal
structure of the tip are of secondary importance. Finally,
the conductance does not vary linearly with the number
of atoms in the contact.
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