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Reformulation of Steady State Nonequilibrium Quantum Statistical Mechanics
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Starting from the usual formulation of nonequilibrium quantum statistical mechanics, the expectation
value of an operator 2 in a steady state nonequilibrium quantum system is shown to have the form
(A) =Tr[e ~ Aj/Tr[e ~ j, where H is the Hamiltonian, Ig is the inverse of the temperature,
and Y is an operator which depends on how the system is driven out of equilibrium. Because (2) is not
expressed as a sum of correlation functions integrated over real time, one can now consider performing
nonperturbatic e calculations in interacting nonequilibrium quantum problems.

PACS numbers: 72. 10.Bg, 05.30.—d, 05.60.+w

Nonequilibrium problems have come under increasing
study in condensed matter physics. On the one hand,
there exists a growing number of classical systems which
undergo a phase transition as one drives them out of equi-
librium. On the other hand, with technological advances
allowing one to make measurements on smaller samples,
it becomes easier to drive systems out of equilibrium.
This is particularly true in making resistance measure-
ments on very small (mesoscopic) devices at low tempera-
tures [1], which is an inherently quantum problem.
Furthermore, while linear response measurements do
probe some equilibrium correlation functions, much more
information can be obtained from the nonlinear response,
which probes the full nonequilibrium problem. For
example, nonlinear current-voltage characteristics in
metal-insulator-superconductor tunnel junctions have
long been used to determine the superconducting gap and
the phonon density of states. In mesoscopic systems simi-
lar kinds of information about the density of states can be
obtained from nonlinear transport [2-5].

In spite of the experimental importance of studying
nonlinear response there are far fewer theoretical tech-
niques available for studying nonequilibrium quantum
systems than for studying equilibrium ones. Again using
the example of mesoscopic systems, the noninteracting
quantum problem may be solved exactly using the
scattering states for electrons coming from reservoirs
which are at diAerent chemical potentials. This is the
essence of the Landauer formula [6] and its subsequent
generalizations [7,8]. For an interacting system the non-
linear current-voltage characteristic can be computed by
doing perturbation theory in the part of the Hamiltonian
which drives the system out of equilibrium, e.g. , an elec-
tric field or the tunneling between two leads at diAerent
chemical potentials. This perturbation theory, which we
will call nonequilibrium quantum statistical mechanics,
involves summing a set of real time correlation functions
for the linear, quadratic, cubic, etc. , response to this in-
teraction [9,10].

While there are many problems for which a perturba-
tion theory is perfectly satisfactory, there is a large class
of problems of current interest for which a nonperturba-

tive approach would be quite useful and perhaps even
essential. In the case of mesoscopic systems it is now pos-
sible to tunnel through a one-dimensional wire [11], a
small quantum dot [12], or a single defect [13] in which
the electron-electron interaction is large. These systems
may exhibit the Kondo effect [14], the fractional quan-
tum Hall effect [15], and perhaps even Luttinger liquid
behavior [16]. Nonperturbative calculations, such as re-
normalization group, Monte Carlo, and variational ap-
proaches, have been essential in understanding these phe-
nomena.

The purpose of this paper is to rewrite the conventional
perturbation theory of nonequilibrium quantum statistical
mechanics for steady state problems in a form similar to
that of equilibrium quantum statistical mechanics. This
provides an explicit expression for the nonequilibrium
density matrix and also the framework upon which one
can build nonperturbative calculations in nonequilibrium
quantum systems. To be more precise let us define what
we mean by the equilibrium and nonequilibrium formula-
tions of quantum statistical mechanics. In equilibrium
the expectation value of an operator 4 is just the trace of
2 in the Schrodinger picture weighted by the Boltzmann
factor e ~ ",where H is the Hamiltonian, p is the
chemical potential, and N is the number operator:

Tr [e P(H @tv )gj——
(A)=

( (1)

Unless otherwise noted all operators are in the Schro-
dinger picture.

In the nonequilibrium formulation one only assumes
that the system is in equilibrium at some initial time, tak-
en here to be t = —~. A perturbation H] is turned on
adiabatically in time, H =Ho+H&e"', to drive the system
out of equilibrium. The expectation value of the operator
8 is its trace in the Heisenberg picture at t =0 weighted
by the initial distribution function pp [17]:

Tr [p.~H (0)j
2

Tr[poj

Equation (2) is usually written in the interaction picture,
where it is easily expanded in powers of Htt(t) =e' "Hi
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[ ( Tr'po A —i„dt's[A, Hir(ti)]+( —i) dtl dt2[[A, Hir(ti)], Hir(t2)]+ (3)

Spar(t i)(A)1=, , „dt|Tr A ~

Tr[plr(0)A}
lim

Tr[poj

Tr[plr(t)A j

Troppo}
(4)

Up to this point we have just made formal manipulations.
Now we must make use of the assumption that a physical
relaxation process exists and causes the correlation func-
tions to decay in time. The time t in the lower limit of in-
tegration is taken to be much larger than this relaxation
time so that the integral has converged. Furthermore, be-
cause g is a positive infinitesimal we can also take g

' to
be much larger than

gati,

i.e., riit i « l. In this limit pir of
Eq. (4) becomes the linear order expansion of e
in the interaction picture, plr(tl) =e ' ' pie ' '. Fi-
nally, we assume that because of the relaxation process
the product of the expectation values of two operators,
Tr[poBr(t)Cr(t')}/Tr[poj, reduces to the product of their
expectation values in the limit that t and t' are separated
by much more than the relaxation time:

Tr[poBr «)Cr «') j
lim

i( (i- -- -Tr[po}
TrjpoB} Tr[poC}
Tr jpoj Tr [poj

Making this assumption with Br(t) =po pir(t) and
Cr(0) =A, we obtain

The term proportional to Hi is just the familiar linear
response of A [18]. The various schemes for doing per-
turbation theory in nonequilibrium quantum systems,
e.g. , Kadanoff and Baym [9] or Keldysh [10], are clever
ways of summing this series. Although the interaction
was turned on adiabatically, in practice one can usually
set g =0 once the perturbation series is written in the
form of Eq. (3) because there is a physical relaxation
process which causes correlation functions to decay at
long times. In this paper we do the real time integrals of
Eq. (3) assuming such a relaxation process exists and ob-
tain an expression of the form of Eq. (1) with the opera-
tor pN replaced by a new operator Y. The operator
H —Y acts as an eAective Hamiltonian with which one
can develop nonperturbative calculations.

For an equilibrium system the two approaches should
give the same result for (A). To see this we compare the
expansions of Eqs. (1) and (3) in powers of Hi. Clearly,
to zeroth order in Hi, they are the same. The linear or-
der term in Eq. (3) can be rewritten using Troppo[A,
Hir(tl)]j =Tr[[Hir(ti), po]A}. Defining a new operator
pl, whose time derivative is rlpir(tl)/Btl =ifpo, Hir(t&)],
the real time integral for the linear order contribution to
(A) can be done explicitly:

Tr[p, A}

Tr[po}
Tr[p, } Tr[poA}

A 1=
Tr[poj Troppo}

This is the same result obtained when Eq. (1) is expanded
to linear order in Hi. The first term comes from the ex-
pansion of the numerator of Eq. (1) and the second term
from the expansion of the denominator. Thus, within the
relaxation process assumption the two formulations are
the same to linear order in the interaction.

One can continue this same procedure for the higher
order contributions in Hi of Eqs. (1) and (3). At each
stage the real time integral can be done using

r)pn+ i, r =i [p„,r(t), Hi r(t)] (7)

and using the relaxation process assumption of Eq. (5).
Here, p„r(t) is equal to e' 'p„e ' ' in the limit g 0,—P(H0+ H 1

—P1Y
and p„ is the term in e ' ' " proportional to
(Hl) . Thus, in equilibrium the two formulations are
equivalent when there is a relaxation time in the problem
which allows the system to "forget ' that it initially had
Hamiltonian H0. Also, note that this proof is not the
same as the Gell-Mann and Low theorem [19], which

does not involve any assumption about a physical relaxa-
tion process.

What happens to this procedure when we go out of
equilibrium? First, one must define how the system is

driven out of equilibrium. We list here three ways that
one can do this for a steady state problem. (i) Initially at
t = —~ one can start with two or more subsystems
(reservoirs) at diA'erent chemical potentials [20]. Turn-

ing on the hopping between the diAerent subsystems
drives a current. By assuming that the subsystems are
infinitely large, they never equilibrate, and one obtains a
steady state nonequilibrium problem. (ii) One can start
with an initial density matrix p0 corresponding to a non-

interacting nonequilibrium system. Instead of having
states in diA'erent reservoirs, here one has scattering
states at diAerent chemical potentials. Because the scat-
tering states do not interact, the system again consists of
subsystems at diAerent chemical potentials. Turning on a

many body interaction causes the scattering states to mix,
resulting in a true nonequilibrium problem. (iii) One can
make an ansatz for the noninteracting nonequilibrium
density matrix corresponding to a current source as op-
posed to a voltage source as in (ii) [8]. Again a many

body interaction is turned on adiabatically. In each of
these examples the initial density matrix has the form

P 0 0 (8)

where I o is not pN. For the case of (i) above Yo is the
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sum of the p;N; for the different subsystems i. The im-
portant difference between the equilibrium and the non-
equilibrium cases is that Yp does not commute with the
perturbation Hl. Although it is often convenient to let
Hp be a one body operator, the following derivation is
valid for an arbitrary Hp.

There were two key elements in the equilibrium proof:
doing the real time integral using the differential equation
for p„[Eq. (7)] and taking the limit as the initial time
goes to —~ [Eq. (5)]. The p„are changed because the
equilibrium and nonequilibrium distribution functions are
different; however, there are still a set of p„which satisfy
Eq. (7). Also, in the nonequilibrium case operators still
become uncorrelated at long times because of the relaxa-
tion process assumption. Thus, the proof remains the
same. All we must do is determine the nonequilibrium p„
which satisfy Eqs. (7) and (8).

To obtain an expression for the nonequilibrium p„a
new set of operators Y„are introduced. The operator
Y„+l is the integral of the commutator of Y„with H l..

&Y.+i,r «) =i [Y., r(t), H)r(t)] . (9)

[Hp, Y„] i ri Y„=[Y„—),H ) ], (i2)

where the positive infinitesimal g has been included to
make the operator equation well defined. It is still not
important for the convergence of the real time integrals
because of the relaxation process assumption. From Eq.
(12) and [Hp, Yp] =0 it follows that [Y,H] =iri(Yp Y)

0. Thus, the eff ect of the Y in e ~ is to change
the distribution of the many body eigenstates, not the
eigenstates themselves. Because V commutes with H, we
interpret Y as the operator into which Yp "evolves" under
the perturbation H l.

This can be made more explicit by considering a simple
example. Suppose our initial (t = —~) system consists

Letting X; r(t) =H; r(t) —Y; r(t) for i =0, 1 and X; r(t)
= —Y; r(t) for i ~ 2, it is straightforward to verify that
the p„ for n ~ 1 given by

p„,(t) = g g X;, r(t) . X;.r(t)( —p)-
m=1 ~- ii+ +i~ =n

(i 0)
satisfy Eqs. (7) and (8). The equilibrium expression for
p„has this same form with Xpr(t) =Hp —pN, X) r(t)
=H), and X; r(t) =0 for i ~ 2. Defining Yto be the sum
of the Y„, Y=gp Y„, the sum of all the p„(n ~ 0) is
e ~ and the desired expectation value of 2 out of
equilibrium is

Tr [e P(H —Y)gj-
(w) =

r)(H —Y)j—
This is the principle result of this paper.

What is the operator Y? The differential equation for
Y„, Eq. (9), may be rewritten in terms of commutators as

Y=P,LNL+P, RNR

NL —ZkLC ki, Ck~

NL +kL( lt' kg)0(li'kL)0

NL +kLit' kggkL

FIG. 1. Schematic representation for the operator Y, which
appears in the nonequilibriurn density matrix e ~ . In this

example there are two reservoirs with potential oA'sets and
diAerent chemical potentials. For all the cases Y is equal to
pLNL+prrNg. (a) For the disconnected system, Nr. and Ng
just measure the number of particles on the left and right. (b)
For the connected noninteracting system, NL measures the
number of noninteracting scattering states moving from the left
to the right. (c) For the connected interacting system, Nz, is ex-
pressed in terms of many body scattering operators yz, which
include particle-hole excitations (depicted as a circle) and other
many body excitations.

of two reservoirs with chemical potentials pl and pR for
left and right [Fig. 1(a)l. Let the operator crt create a
single particle state in the right-hand reservoir and simi-
larly for ck, . The operator Yp is pqNL+pRNR, where
Nrr is the sum Pr„cp ck„and similarly for NL. Upon
turning on the interaction Hl, which here includes a hop-
ping term between the L and R reservoirs and a many
body interaction, a single particle state in the right-hand
lead evolves into a scattering state via the Lippmann-
Schwinger equation. There is an analogous equation for
operators, where the operator ck„ is said to evolve into a
scattering state operator yk, . Letting ()irr„)„be the con-
tribution to y)t proportional to (H ) ), this equation
reads (n ~ 1)

d(Vr'. )nr,
i~k. (yr',.)., r

=—i[(yr',.).-),r, H ],
dE

(i 3)

Y =p rr Z )tri, V'r „+p LZ )irr, )irk,
kz kL

(i 4)

satisfies Eq. (9). Thus, we have been able to interpret the
derived result for Y in terms of many body scattering
operators.

The conventional tunneling formalism or Landauer for-

where (yJ, )p=cr,„. It is important to note that for the
case of noninteracting electrons this operator creates a
conventional scattering state [Fig. 1(b)], while for the
full interacting problem it is a full many body operator
consisting of particle-hole excitations, etc. [Fig. 1(c)].
Using Eq. (13) and the similar equations for the left-
hand scattering states, it follows that Y„defined as the
contribution proportional to (H ~

)" in
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&A(t —t'P)B(t')) =(e P B(t')e~ A(t)) . (15)

The additional contributions besides (B(t')A(t)) are
computed by expanding e P B(t') e~ in Y.

In this paper we have reformulated traditional non-
equilibrium quantum statistical mechanics in a way
which does not involve response functions in real time.
This answers important conceptual questions: What is
the nonequilibrium density matrix? How does the Auc-

tuation dissipation theorem break down? It also opens
the door to doing nonperturbative calculations in none-
quilibrium quantum problems. For example, one can
minimize the operator H —Y to obtain the steady state
solution to a nonequilibrium problem at low tempera-
tures.
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mula is modified by including many body scattering
operators in the exponential instead of single particle
ones. It is important to note that putting scattering
operators in the exponential does not mean that the densi-

ty matrix can be expressed as a Slater determinant of
scattering states as in the noninteracting case. Also, al-
though Ho in this example is quadratic (noninteracting),
the derivation of Y presented earlier is true for an arbi-
trary Ho.

All of the above discussion deals with the expectation
value of a single operator A. To compute the expectation
value of two operators at diA'erent times, e.g. , (A(t)
xB(t')), a similar derivation shows that the time depen-
dence is included via H: A(t) =e' 'Ae ' '. This illus-
trates one of the principal diA'erences between equilibri-
um and nonequilibrium problems: The operator which
governs the time dependence, H, is not the same as the
operator which governs the occupation factors, H —Y.
This is the reason that the Auctuation dissipation theorem
breaks down as one goes out of equilibrium. Recall that
the key relation which leads to the fluctuation dissipation
theorem [21] in equilibrium is that (A(t —iP)B(t')) is

equal to (B(t')A(t)). For this class of nonequilibrium
problems one finds instead that
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