
VOLUME 70, NUMBER 14 PH YSICAL REVIEW LETTERS 5 APRiL 1993

Numerical Study of Fractional Quantum Hall Electron-Hole Systems:
Evidence of Stable Anyonic Ions

X. M. Chen ' and 3. 3. Quinn ' '

' Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

(Received 28 December 1992)

Spatially separated electron-hole layers in strong magnetic fields are studied by exactly diagonalizing
the Hamiltonian of a small number of particles. When the separation between layers is of the same or-
der as the intralayer particle separation, the ground-state energy of the system displays a pronounced
cusp as a function of the Landau level degeneracy at an odd denominator fraction v„where
v, —= (v, —

vt, )/(1 —
vt, ), and v, and vt, are the electron and hole filling factors (vt, «v, ). Detailed

analysis suggests that the ground state responsible for the cusp consists of stable ions (composed of
Laughlin quasiparticles bound to a hole) weakly coupled to an incompressible fluid state of the remain-
ing electrons.

PACS numbers: 71.35.+z, 73.20.Dx, 73.20.Mf

The strong interparticle correlation of two-dimensional
electron systems in a strong perpendicular magnetic field
leads to the formation of the Laughlin incompressible
liquid state [1] and the fractional quantum Hall effect
(FQHE) [2]. Two characteristic features of the in-
compressible states are the discontinuity in the chemical
potential of the system when an electron is added, and the
finite energy gap between the ground state and the excit-
ed states. Recently, the rapid developments in the
magneto-optical experiments [3] in the FQHE regime
have prompted great interests in how the properties of in-
compressible states of an electron system are aAected by
the presence of a few positively charged free holes (either
on the two-dimensional plane or separated from the plane
by a finite distance).

In an electron-hole system strong correlations exist be-
tween particles of like charge, as well as between particles
of opposite charge. For a system with an equal number
of electrons and holes (v, =vh) in the same two-
dimensional layer, the correlations between electrons (or
holes), which favor the condensation into the incompres-
sible Auid state, are overshadowed by the strong attrac-
tive interaction between electrons and holes. If only the
first Landau level is considered, the ground state can be
obtained exactly and viewed as a Bose condensed state of
noninteracting excitons [4]. The Bose condensed state of
k=0 excitons is also believed to be the ground state of
the system when the electrons and holes are in two
diAerent layers with a small layer separation. As the lay-
er separation is increased, the interlayer correlations be-
come relatively less important, and the system would be
expected to undergo a phase transition to either a double
FQHE state or an excitonic charge-density-wave state
[5].

For a system in which the number of electrons diAers
from the number of holes (v, ave, ), i.e., for a general
electron-hole system, the nature of the ground state is
still an unsolved problem. In a recent paper, based on an

exact mapping between the electron-hole system and a
two-component electron system, MacDonald and Rezayi
[6] conclude that in the symmetric case where electrons
and holes are in a same layer, the charged electron-hole
fluid should exhibit the FQHE when the filling factor of
the excess charge v, = v, —

vg is a fraction with an odd
denominator. This prediction follows from the assump-
tion that for y two-component spin 2 electron system
with a negligible Zeeman splitting, the ground state is al-
ways maximally spin polarized. In this paper we present
a numerical study of a finite-size general electron-hole
system with an arbitrary layer separation d. We find that
in the symmetric case, neither the chemical potential
discontinuity nor the finite energy gap between the
ground state and the excited states appears. In the asym-
metric case, we discover that when the layer separations
are of the order of the magnetic length, strong cusps are
obtained at v, /(1 —vs) =p/q, where q is an odd integer.

Let us first consider the symmetric case where elec-
trons and holes are in the same layer. It has been pointed
out by several authors that the electron-hole system in
this case has a so-called hidden symmetry [6-8]. One of
the simple ways to understand this symmetry is to notice
that the commutator of the Hamiltonian of the system 0
and the creation operator of a k =0 exciton d (0) is pro-
portional to the creation operator itself, that is,

[H, d'(0)] =E.(o)d'(0) .

Here E, (0) is the binding energy of a single exciton. In
the Landau gauge the exciton creation operator d (0) is
given by

dt(0) =,t, pa jb t x, (2)

where aj (or bxt) is the creation operator of a free elec-
tron (hole) in the first Landau level with the wave func-
tion ttx(r) [or px(r)], and NL is the Landau level degen-
eracy. It follows from Eq. (1) that for a given state of
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0.6the electron-hole system, the introduction of an extra
electron-hole pair with a total momentum k =0 only
changes the energy of the system by F., (0), the single ex-
citon energy. I n other words, as far as the energy of the
system is concerned, it appears as if a k =0 exciton does
not interact with any other particles. This is a truly
amazing result since even though a k =0 exciton is charge
neutral, the Pauli principle should lead to some sort of ex-
change and correlation interaction between the electron
(hole) participating in the exciton and the rest of elec-
trons (holes) in the system. It turns out that when we act
the operator d (0) on a many-particle state ~y), we are
not creating a bare exciton with the binding energy
E (0), but a deformed exciton with a reduced binding en-
ergy. The reason for this is that not all of the states in
the Landau level are available to participate in the exci-
ton state since some of them are already occupied. It is
interesting and not di%cult to show that the loss in the
binding energy of the deformed exciton is exactly com-
pensated by the exchange interaction mentioned above.
It is worth emphasizing that the statement that k =0 ex-
citons do not interact with electrons is correct only in the
sense of the invariance of energy. Other quantities, such
as the pair correlation function between electrons, are
drastically altered by the addition of the excitons.

We perform our finite-size calculations in the spherical
geometry [9,10]. Electrons and holes are put on a sphere
of radius R =S with a magnetic monopole at the center,
where 2S+1 is the degeneracy of the first Landau level.
The Coulomb interaction between the particles of like
charge is taken to be inversely proportional to the chord
distance, and the interaction between electrons and holes
is modulated by the layer separation d, i.e.,
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FIG. l. Energy spectrum of an electron-hole system with
A, =7, NI, = I, and d=0 at S=7.5. Inset: Ground-state ener-
gy as a function of S for the same system. Note that the Lan-
dau level degeneracy NL =2S+1, and v, =

& corresponds to
S =7.5.

sarily one of these multiplicative states [d (0)]
where ~N, ) is a quantum state of a N, electron system
with the same S. Also plotted in Fig. 1 is the energy spec-
trum of the system at v, =

3 (S =7.5). As has been no-

ticed by several authors for smaller systems, there is no
finite energy gap between the ground state and low-lying
excited states. Surprisingly, the lowest energy levels at
L =0, 1, and 2 corresponding to dressed excitons [8] are
almost degenerate. The gap observed in Ref. [8], which
separates the multiplicative states from higher states,
does not occur for our larger system suggesting that it
could be a finite-size eA'ect. Nevertheless, we do find a
finite energy gap between the lowest state and the excited
state for a given L at L ( 3. This gap persists when we
increase the size of the system from N, =5 and NI, -i to
N, =7 and Np, =1.

For the asymmetric case, in which electrons and holes
are on two diff'erent layers, the ground-state properties, as
well as the collective excitations of the system, depend
strongly on the interlayer separation. It is conceivable
that in a certain range of the layer separation, each hole
may bind only one or two quasielectrons, instead of a
whole real electron, because of the weaker interlayer in-
teraction. In Fig. 2(a) the ground-state energy of a sys-
tem of seven electrons and one hole at d =1.75 is shown
as a function of the Landau level degeneracy S. A pro-
nounced cusp is revealed at S=8. Two other weaker
cusps (or kinks) appear at S=6 and 5. Also plotted in

Fig. 2(a) is the ground-state energy of a six-electron sys-
tem. As can be seen, by adding one electron-hole pair to
the six-electron system the cusps (kinks) corresponding to
v 3 5 and 3 have all been shifted towards the right

by 0.5 of the S value. We have also calculated the

V,g()Q~ —A2() =(R )Q~ —Q2) +d )
where 0 is a unit vector in the radial direction denoting
the position of a particle on the sphere. The quantum
states of the system are classified by eigenvalues L(L+ 1)
and M of the square of the angular momentum operator

A
2L and its z component L, . The eff'ect of the neutralizing

background is included by adding a shift [11] of
N, /2R to the calcu—lated energy, where N, =N, NJ, . —

I n Fig. 1 we have plotted the ground-state energy of a
seven-electron, one-hole system at d=0 as a function of
the parameter S. From the prediction of Ref. [6], one
might expect downward cusps to appear at S=7.5, 5.5,
and 4.5 corresponding to v, = —,', 5, and 3. Our result,
however, shows no sign of the discontinuity [12] in slope
at these values of S. The assumption that the ground
state of the spin 2 electron system onto which the
electron-hole system maps is maximally spin polarized is
equivalent, in the electron-hole system, to the assertion
that the ground state can be obtained from the ground
state of a N, electron system by simply adding Np exci-
tons of momentum k =0. Finite-size calculations clearly
indicate that the ground state for a given S is not neces-
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F1G. 2. (a) Ground state energy as a function of 5: (dia-
monds) electron-hole system with 1V, =7, Np, =1, and 2 =1.75;
(circles) system with six electrons only. (b) Energy difference
between the ground state and the lowest excited state for an
electron-hole system with A, =7, A'y, =1, and d=l. 75. Note
that the peaks here correspond to the cusps (kinks) in (a).

ground-state energy for an eight-electron, two-hole sys-
tern at the same layer separation. The result shows that
the positions of the cusps (kinks) are all shifted in the S
value by one unit towards the right relative to those in the
six-electron system. In general for a N, electron and NI,
hole system with d = 2, we would expect that cusps (or
kinks) appear at 2S =25~ +Np„where S~ is the 5 val-
ue at which an incompressible state occurs for a N,
=N, —Nh electron system. For the v, =

3 state, we
have 25jv =3(N, —1) and therefore 2S =3(N, —1)
—2Np. This relation suggests that the ground state at
5=8 in Fig. 2(a) consists of a —, incompressible liquid of
seven electrons and a bound state complex of one hole
and two Laughlin quasielectrons. In Fig. 2(b) we show
the energy difference AE between the ground state and
the lowest excited state for several S values. We find that
at the positions where the cusps appear in the ground-
state energy, AF. displays strong peaks characteristic of a
dissipationless system.

The nature of the bound state complex is evident in

Fig. 3(a), where the electron density distribution around
the hole g, t, (~r —rt, ~) (averaged over all degenerate states
of different M) is plotted with ri, fixed at the origin (the
North pole) for 5=8. The binding of two quasielectrons
to the free hole means the accumulation of an extra

I. IG. 3. Electron-hole system with W, =7, AI, = 1, and
d=1.75 at 5=8. (a) Pair correlation function g,p, (r) in the
ground state (L =3). (b) Energy spectrum of the system.

—
3 e charge around the position of the hole. Our calcu-

lations reveal that the northern hemisphere indeed con-
tains approximately —

3 e more electronic charge than
the southern hemisphere, and the value of 4+R g, i, (~r—rq~) appears to approach 7 —

3 at large ~r
—rq~. The

energy spectrum of the system [Fig. 3(b)] consists of a
continuous band about 0.06e /1 above the ground state
and a few discrete levels between them. If our conjecture
on the ground state is correct, these levels may be viewed
as excited states of the bound state complex. The cusps
at 5=5 and S=6 can also be understood in terms of
bound states of the valence band hole and the appropriate
number of quasiparticles of the v= 3 and v= 5 states.
Details will be given in a later publication.

In summary, we have studied the spatially separated
electron-hole system by exactly diagonalizing the Hamil-
tonian of a small number of particles. At d=0 our result
does not show any signature of an incompressible state at
v, =

3 . For the case of d= 2, our results reveal that the
ground-state energy displays a strong cusp (or kink) at
(v, —

vq )/(1 —
vh ) =p/q (vt, « v, ), and the states respon-

sible to the cusps is an incompressible liquid of electrons
at v, =p/q and a dilute gas of bound state complexes
consisting of a hole and Laughlin quasielectrons. The im-
plication of these novel states in the optical properties of
FQHE's is currently under investigation.
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