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Pattern Formation Due to Spin-Wave Instabilities:
Squares, Hexagons, and Quasiperiodic Patterns
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We study dissipative patterns caused by spin-wave instabilities in insulating ferromagnetic films
which are driven by out-of-plane parallel pumping. Using a multiple-scale perturbation method,
we derive amplitude equations for magnetostatic modes with wavelengths much larger than the
film thickness, and study the stability of solutions with constant amplitudes. The main result is
that the only stable patterns are squares, hexagons, and quasiperiodic patterns based on three
standing waves. Quantitative results strongly support the suggestion that these patterns should be
experimentally observable by means of Faraday rotation.
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The emergence of wave patterns due to some instability
mechanism in systems far from equilibrium is a general
behavior in nature. These patterns and their formation
have been intensively studied in Quid systems, especially
in Rayleigh-Benard convection, Taylor-Couette convec-
tion, electrohydrodynamic convection in liquid crystals
[1], and Faraday instabilities of fluid-air interfaces [2].

More than forty years ago Bloembergen and Damon
[3] found in high-power ferromagnetic resonance (FMR)
of ferrites an anomaly (saturation of the main resonance)
which was explained by Suhl [4] as an effect of a paramet-
ric resonance instability of certain spin waves. Iri the last
decade this system has been investigated as an example
of a nonlinear system showing deterministic chaos [5].

Most FMR experiments measure only global properties
like the absorbed microwave power. Only a few exper-
iments, all using inelastic Brillouin scattering as a tool,
investigate the spatial properties of these patterns [6]. Up
to now apparently no experiments have been performed
which give either directly or indirectly a spatial image of
these standing-wave patterns [7].

In this Letter we calculate the spatial patterns which
emerge just above the instability threshold. We con-
sider an infinitely extended insulating ferromagnetic film
where the static field H and the driving field h are per-
pendicular to the film plane (i.e. , out-of-plane parallel
pumping), and derive amplitude equations from the ba-
sic Landau-Lifshitz equation:

1 g—8&M = —M x H, rr
— M x (M x H, rr),

Mo

where M is the magnetization with ~M(r, t)~ = Ms the
equilibrium magnetization, H,g the effective magnetic
Geld, p the gyromagnetic ratio, and g a dimensionless
damping parameter, which is directly given by the half-
width of the resonance line divided by H. In the mag-
netostatic limit (i.e. , electromagnetic wave propagation
is negligible), the efFective magnetic field of an isotropic
parallel-pumped ferromagnet is

where e, is the unit vector defined by the direction of the
static field, a is the frequency of the driving field, D the
exchange stiffness constant, and C M the magnetostatic
potential which obeys the Poisson equation

64M = 4rrV' M.

The boundary conditions are ~V'4M~( z~ —+ oo) = 0 and
O, M(z = 0) = O, M(z = d) = 0, where d is the fllm
thickness. We neglect any kind of surface pinning.

Prom bulk calculations it is well known that the most
unstable modes are spin waves propagating in the plane
perpendicular to the external fields [8]. At the threshold
the uniform state bifurcates via a supercritical pitchfork
bifurcation into a stationary state (stationary after a time
average over the fast time scale given by 2rr/iv).

Using a multiple-scale perturbation calculation one ob-
tains a set of amplitude equations governing the dynam-
ics near the threshold h, :

rp
' = eA, —c |A,

~ ~) a(ni —n, )~Ai~ A, , (4)dt

where e = (h —h, )/h„and As is the amplitude of
a standing wave with the in-plane wave vector k
k, (e cos ns + e„sinns). The coefficients ro, c, and a are
real due to the fact that the bifurcation at the threshold
is not a Hopf bifurcation. The coupling coefficient a(n)
is a 7r-periodic function because of rotational symmetry,
but a( —n) g a(n) because the reflection symmetry is
broken by the static field H.

The magnetization M and the magnetostatic potential
C M are given in first order of the amplitudes A.j by

M +iM„=Mo) '~e'[A (t)e'" *"'~'+"""~' +c.c.]

xm~(z, t),

C
4~Mp ) [&A (t)elk~(x cos n~+y sin a~ ) + ]M = ) j

C
3

H, tr = (H + h cos cut) e, + DV' M —V'O'M, (2) x(P(z, t), (6)
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where my and P are the time periodic solutions of

Bqm~ = p(+i —g) [
—DMDB, m~ + 0(H —4vrMO + DMok, + h, cos ~t) m~ —4vr MOP),

0 = B,P —k, P —k, (m+ + m )/2.
(7)

Note that m = m+ because P is real.
From the Floquet theorem it follows that the general

solution of (7) is of the form (m~, P) = (m~, P) exp(At),
where m~ (z, t) and P(z, t) are (2ir/a)-periodic functions
in t. The stability of the uniform state M = Mpe, is
determined by the "neutral curve" h„,(k), which is de-
fined by the value of h where the first Floquet exponent A

crosses the imaginary axis. For small damping constant g
there will be sharp relative minima of h„c(k)correspond-
ing to modes fulfilling the parametric resonance condition
ui, = ~/2. The absolute minimum (i.e. , the lowest rel-
ative minimum) defines the actual threshold h, and the
critical wave number k, .

We are looking for modes with a low number of nodes
in the z direction. For thick films (i.e. , d )) ~D/v'47r)
we can qualitatively distinguish between exchange modes
and dipolar (i.e. , rnagnetostatic) modes depending on
whether the exchange terms or the dipolar terms in (7)
dominate. For certain values of w and k, crossings be-
tween exchange modes and dipolar modes occur and a
kind of "hybridization" will take place [9], which leads to
an increase of the threshold. This makes it possible for a
nonhybridized mode to become the most unstable mode
[10]. Thus for certain values of cu (or H) there will oc-
cur a competition between modes with diferent in-plane
wave numbers A:, but the same threshold. We will not
further consider this interesting competition which may
also lead to quasiperiodic patterns.

In this Letter we consider the case

A:,d &(0, (8)
where it is possible to calculate the coeKcients c and a
of (4) analytically. Neglecting the hybridization with ex-
change modes we assume that the most unstable mode
is the nodeless dipolar mode. Furthermore we make the
approximation that this mode is uniform in z because
of (8). Using this approximation P can be eliminated in

(7) in leading order of k,d by P = —(m+ + m )k,d/4
The uniformity in z drastically simplifies the calculation
of the coefficients of the amplitude equation (4) mainly
because in (5) no second-order terms of A~ occur. The
coeKcients are lengthy expressions containing time aver-
ages of products of m~. The functional form of a is

a(o.) = s
—q+ (s + q) cos2o. —o,s sin2n.

In order to get (9) it is not necessary to solve (7); only
the uniformity assumption in z is required. In the case
of weak damping (i.e. , g (( 1), a solution of (7) is
very well approximated by the ansatz m* = m+
p+ exp(isn't /2) + p, exp( —iwt/2), where p~ are given by
p+ ——(1+/1 + P)(i —1)+O(g) and p = b(i+1)+O(g),

respectively, with 6 = 27rpMok, d/cu. In leading order of
g and k,d the coefficients of (4) and (9) are

2 48 16' 2 4' pMp k,d
~0 — —

A d ~ —
9D

S—
(10)

Since c & 0, the bifurcation at the threshold is super-
critical. Only in this case are the amplitude equations
(4) useful to describe patterns and their dynamics. Note
that as oc O(g i). Thus the coupling a is dominated
by the term which breaks the reflection symmetry. On
the other hand, q is very small. It is determined by the
part of the equation of motion which comes from the
exchange interaction only. Below we will see that hexag-
onal patterns become unstable if g changes its sign and
becomes negative. This sign change may be possible due
to higher-order corrections in k,d.

In order to investigate patterns described by the ampli-
tude equation (4) it is convenient to introduce the ansatz
A~(t) = [(e/c)P~(2et/ro)] ~ exp[i%'~(2et/~0)] which leads
to

P, = 1 —P, —) a(c& —c,)Pi P, , C, =O.

The phase of each standing wave is constant, and is un-
determined by the amplitude equation. Two of these
phases are related to the translational invariance of an
infinitely extended, uniform film. The other phases are
related to so-called phason modes [ll]. The dynamics
of these modes is governed by higher-order terms of the
amplitude equation.

Stationary patterns are K-wave patterns where N am-
plitudes of (ll) are nonzero and all others are zero.
For a given set of angles o,~ such an N-wave pattern
is uniquely determined by N linear algebraic equations.
Since P~ ) 0, not all values of the u~'s are allowed. In or-
der to study the stability of these patterns we distinguish
between internal and external stability. A pattern is in-

ternally stable if small disturbances of the amplitudes of
the waves building the pattern decay exponentially, and
externally stable if no additional waves grow up.

The simplest pattern is a one-wave pattern with ampli-
tude P = 1. This pattern is externally unstable against
waves with relative angles n between —vr/2 —ni and —o.2,
where 0 ( Q. q/2 oc g. The fastest growing wave has an an-

gle near —45 . This instability is caused by the dominant
reflection-symmetry-breaking sine part. This is similar
to the Kuppers-Lortz instability of a rotating Rayleigh-
Benard system [12], which has rotational symmetry but
where the rigid rotation breaks the reHection symmetry.
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Contrary to the ferromagnetic case the symmetry is only
weakly broken which means that the roll pattern becomes
unstable only if the angular velocity is larger than some
threshold.

Two-wave patterns exist only for angles from small in-
tervals around 0' and 90', with widths proportional to
g. The patterns are stable only for angles from a sub-
interval located at 90'. Since g (( 1, the square pattern
is, roughly speaking, the only stable two-wave pattern.

Three-wave patterns exist only if the angles between
any two wave vectors are less than 90' (see Fig. 1).
The exact existence area in parameter space spanned by
these angles is of order g smaller. For 0 & q & 5/6,
the—generally quasiperiodic —three-wave patterns are
stable in a large area; only in small areas near the ex-
istence boundary does an external instability occur. In
the limit g ~ 0 the stability boundary does not depend
on g. For negative q, around the point corresponding
to the hexagonal pattern an area opens with internally
and externally unstable patterns. The internal instability
of the hexagonal pattern is caused by an oscillatory in-
stability which leads to a supercritical Hopf bifurcation
similar to a rotating Rayleigh-Benard system with an
angular velocity larger than the Kuppers-Lortz thresh-
old; the hexagonal pattern is unstable due to Hopf bi-
furcation, which leads to some kind of weak turbulence
[13]. The Hopf frequency is as/2 in units 7o/(2e) or
(2/3)~pMok, de in physical units; it is independent of
g and should be much less than ~ in order to be consis-
tent with the assumption that the Az vary on a longer
time scale than the driving Geld. An interesting and open
question is: Which pattern will the system select? The
usual argument that the system selects the ground state
does not work since the amplitude equation (4) cannot
be derived from a Lyapunov function L (i.e. , there exists
no L such that dA&/dt = OI/OA~) wh—ich could serve
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FIG. 1. Existence and stability boundary of three-wave so-
lutions for g ~ 0 (i.e., a, —+ oo) and 0 & g & 5/6. Dashed
lines code the existence boundary and the internal stability
boundary; they are nearly identical. Solid lines code the ex-
ternal stability boundary.
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FIG. 2. Computer-generated images of several patterns:
(a) Square; (b), (c) hexagonal patterns for diferent val-
ues of the phases 4~; and (d) quasiperiodic pattern for
o;2 —o.z

——80.21, Q.3 —9.2 ——57.30'. The grey scale codes
the time average of M~ + M„where black means zero and
white means maximum values. The side length of each image
is 20vr/A:, .
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as a potential energy.
All N-wave patterns with K ) 3 seem to be unsta-

ble. For equidistant angles they are internally unstable.
For arbitrary angles it is only a conjecture which is sup-
ported by numerical simulations of (4) using 48 waves
with equidistant angles. Only squares and three-wave
patterns survived in such simulations after starting with
a random initial condition with small amplitudes.

In order to find out whether these patterns are ob-
servable in real experiments, we calculate the expected
contrast of an experiment using Faraday rotation which
measures the time average of M, . The pattern contrast
C„is defined as the di8'erence of the maximum and the
minimum normalized by Mo,

C„= max(M, ) —min(M, ) ~ Mo,
x,y z,y ) (12)

where ( ) denotes the time average. For regular N wave-
patterns (i.e. , equidistant angles) we get in leading order
in g and k,d

k,d

[N(4 —3') —3] sin x/(2N)

independent of g, which is a surprising result in view of
the fact that the absorbed power is proportional to g. For
squares and hexagons the contrast is C„'" " = —k,de
and C„'"''" = &k,d e, respectively. Thus for k, d = 0.1
and pumping power 2 dB above threshold (i.e. , e = 0.26)
one should get a contrast of —0.01 for hexagons which
should be detectable by means of Faraday rotation [14].
Figure 2 shows computer-generated images for several
patterns, simulating the expected images from experi-
ments using Faraday rotation as an imaging technique.
Note that the lattice constant of the visual square pattern
is half that of the true pattern. The diferent hexagonal
patterns are due to di6'erent values of 4~.

In this Letter we have shown that squares and three-
wave patterns (hexagons and quasiperiodic patterns) are
stable dissipative patterns in an out-of-plane parallel-
pumped ferromagnetic insulating film. This result was
derived in the limit pumping power near critical pump-
ing power (e —+ 0), critical wavelength much greater than
film thickness (k,d —+ 0), and weak damping (g —+ 0).
What can one expect if one is not in this limit? The
amplitude equation will be true as long as t (( 1 inde-
pendent of the values of k,d and g. Only the coei%cients,
especially the nonlinear ones (i.e. , a and c), may change,
with the consequence that, e.g. , hexagons may become
oscillatory unstable. It is not possible to say for which
values of e the amplitude equation is no longer a good
description of the dynamics. This may be determined by
performing suitable experiments.
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