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An analytic expression for the dynamic structure factor S(k,w) of a 3D electron gas is obtained by
the recurrence relation method. It is valid for one metallic density s = 3.5 and is exact asymptotically,
i.e., k> kr (kr the Fermi wave vector). The result is based on an assumption, justified by the kinetic-
energy and static-structure-factor sum rules and also numerically approximately corroborated. The ex-

pression is compared with an experimental measurement of Li at k =2.08kF.
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Except possibly at the long wavelength limit, the dy-
namic structure factor S(k,w) of a 3D electron gas at
metallic densities r; =2-6 is not exactly known, where k
and w are the wave vector and frequency, respectively.
Our knowledge is very approximate [1], and still beset
with controversies. We present here an asymptotically
exact solution of S(k,w) at T=0, valid at one particular
metallic density r; = 3.5, obtained by the recurrence rela-
tions method, which may help address some of the issues
in this subject.

The dynamics of an electron gas has been most often
studied via the frequency moments c,(k), which are re-
lated to S(k,w) through the frequency-moment sum
rules

Lot =J sk Vdo, n=012,..., )

at T=0 [1]. The moments of the density response func-
tion are calculable from

cn(k)=(L"py,L"px) , )

where Lpy =[H,p], H is the Hamiltonian, py is the den-
sity operator, and the inner product means the Kubo sca-
lar product. With c¢,(k) one can construct S(k,w)
uniquely by means of the recurrence relation method
[2(a)]. The density relaxation function = (z) = (p(¢),
i)/ Cor,px), where t is the time [2(b)], is connected to
S(k,w) as follows:

Sk, 0)=Sk,w)/colk)
=—z " 'Im[l —Zék(z)]zaiw+f, (3)

where £ (z) =.LZ, (1), and L is the Laplace transform
operator. Now generally

E(z)=1/z+A/z+As/z+ - - - (continued fraction) ,

)
where each A, can be expressed entirely in terms of the
ratios Ap—y,...,Ao, where A,=c,+/c, [3]. Hence,
S(k,w) may be obtained, given {c,} or {A,} independent-

ly.

We consider the standard homogeneous 3D electron
gas model defined by H =Hy+V, where H is the kinetic
energy (KE) and V is the Coulomb interaction energy
with the potential v(r) =e?/r [1]. The moments for this
model can be thus calculated by (2). For k> kr (kf the
Fermi wave vector), we find that ratios of the successive
moments can be given as

n
An=cnti/en=P+nQ+ Y Ri+o(k 2, n=0,1,2,...,
=1

(5)

P=k*—(4x/3)k*+ ¥ x2— ¥ y+ T 0ll1+2g(0)],
(5a)
0=06x/3)k?— ¥ x>+ 1y, (5b)
n=—2%3(n—=1)2n—=3)A-27/9(n—1)B, (5¢)
A=x2—%y, (6a)
B=x’— 5 0}ll —g0)], (6b)

where & is now expressed in units of kr, A =1, w, is the
plasma frequency expressed in units of g, the Fermi en-
ergy, and g(0) is the pair correlation function at the ori-
gin; x and y are the average one-particle KE and KE
squared, expressed in units of ¢z and e?, respectively [4].
Evidently A, [(5)] is r; dependent through x, y, g(0), and
).

If A, were independent of n, e.g., A, =4, (5) would be
in the form of a 1D transfer matrix equation, ¢, +| =Acy,
in which A would act as an eigenvalue. But it is not; A, is
nonlinearly dependent on n through R,. Hence, a general
solution even for large k is probably precluded. To obtain
a particular solution, we make the following assumption
(to be justified): At ry=rs, A=B=0. Then, to order
k9, (5) under the assumption becomes

Aalr =r¥) =AY =P*+nQ* =(n+5)Q*, s=P*/Q*,
&)
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where an asterisk on a real quantity means that its densi-
ty is set at r,=ry. Then, valid to this order of k,
Ax —Ai—1=Q%, i.e., the difference is now independent of
n.

Since A, is a function of Ay, ...,A [5], (7) implies
that {A}} is composed of two families:

A 1(k)=(n—1+5)0*,
AS (k) =nQ* ,

(8a)
(8b)

n=1,2,.... Substituting (8a) and (8b) in (4), we ob-
tain
" oo —u s—ldu
5 () =—3% £t ©9)
e Q*r(s) j; u+z?Q*

if Res >0 and z= *i|£| [6]. Finally substituting (9) in
(3), we obtain

S*k,w) =[0¥/0*ST(s)]e ~**/Q* , (10)

where the frequency o is in units of ¢r. Thus, (10) is an
asymptotically exact expression for the dynamic structure
factor of the electron gas at r;=r subject to our as-
sumption. Observe that $*(k,w) is smoothly peaked at
o=a, ie, (0/dw)S*(k,®)=0, &=(s0*)'2 which
may be interpreted as the recoil frequency (since, e.g.,
o— hk?/2m as k — o).

We shall now turn to justify our assumption A4*
=B*=0. It asserts that there exist unique relationships
between x, y, and g(0) at r,=r. These relationships
cannot be determined by the frequency moment sum
rules (1). But if they exist, one may be able to deduce
them from other general properties of the dynamic struc-
ture factor. If, for example, 7 denotes the one-particle

S*(k)=k2Q* 'I(s+1/2)/T(s+1)=1— {2 x*2—

Now u*=1%1w;%¢*(0) from (13) by setting r,=r}.
Identifying u* from (14a), i.e., the coefficient of k ~*
therein [9], we obtain (without using 4* =0) the desired
relationship:

é—w,’fz[l—g*(O)]=—‘9—ox*2+%y*. (14b)
Hence, by (14b),
B*=x*1— oy 1—g*()]=%4*. (14c)

Since 4* =0 by (12b), B* =0 also by (14c). It shows
that 4 and B vanish simultaneously at one unique value
of rs. Therefore, we conclude that (10) is an asymptoti-
cally exact solution of the dynamic structure factor at
ro=r¥.

The possible usefulness of our asymptotic expression
(10) evidently rests on the value of ry*. Since the one-
and two-body distribution functions are not analytically
known, we are unable to determine it exactly. But we can
attempt to obtain it approximately by numerical means.
To do so, it is necessary to know the values of x, y, and
g(0) for a range of r;. Several people have calculated

Sy + o 1+2g* OBk ~*+ok 9.

KE in 3D, its average value at T =0 is given as follows:

(Tm = lim 21+1
k—= (4, )"

j;wS(k,w)(w—w,)z"dw, (an

n=12,...,

where o, is the recoil frequency [7]. Recall that (T)=x
and (T? =y, where x and y are parameters of the mo-
ments. See (5a)-(5¢). Since S(k,w) is valid for large k,
it may be used in (11) to calculate {T") at r,=rF. Sub-
stituting (10) in (11), with o, =w; =@, we obtain, when
n=1 and 2,

(7),3* =x*, (12a)

(T, =3 x*2=p*. (12b)

(12a) indicates that the average KE is given correctly by
(10). It is a necessary condition for the validity of our
expression for $*(k,w), here obtained independently of
the frequency moment sum rules (1). Equation (12b) in-
dicates that 4* =x*2— 2 * =0, i.e., the first part of the
assumption is satisfied.

There is a relation due to Kimball [8], which relates
g(0) to the large-k form of the static structure factor
S (k) if r;=0, given as follows:

yElemm{k4[1 —SK) =% wpg(0). (13)
Since S(k) may be obtained from S(k,w) by S(k)
=p ' f5°dw S (k,w), where p is the number density, (13)
can be used to establish a relationship between g(0) and
x or y. Using (10), we obtain $*(k) via the structure-
factor sum rule,

(14a)

£(0)=0.3-0.01 for r;=1-10. Although different me-
thods yield somewhat different values, most seem to agree
to the two significant places. The values given by, for ex-
ample, Lantto et al. [10], and Utsumi and Ichimaru [10]
are remarkably consistent in spite of different methods
used. Several people [10,11] have also calculated x for
rg=1-10. Their values differ at most by about 4%. To
our knowledge, there are no published calculations of y.
Lantto [11] calculated x by using the momentum distri-
bution n(k) obtained by a Jastrow variational method.
He similarly calculated y, which, being more sensitive to
the tail of n(k), is probably somewhat less accurate than
x. We use Lantto’s x and y, also Lantto et al.’s g(0), all
obtained by the same variational method. (For a con-
sistent determination, they must all be obtained by one
method.) Shown in Fig. 1 is 4 and B vs r;, where we ob-
serve that 4 and B vanish simultaneously at r; =r =3.5.
Allowing for different methods, we conclude that rg
=3.5%+0.2, and hence also wy =1.76 +0.10.

The fact that r;* falls within the metallic density range
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FIG. 1. A and B vs r;. See Egs. (6a) and (6b).

makes our asymptotic solution (10) meaningful. The
value of r is in fact close to that of Li (r;=3.25). For-
tunately there is an old measurement of S(k,w) for Li at
k =2.08kr [12(a)l. This value of k is probably large
enough to permit a comparison of the measurement with
our asymptotic result. Shown in Fig. 2 is the measured
dynamic structure factor for Li against the theoretical
one (10) with k set at the experimental value. The posi-
tion of the maximum S(k,w) is nearly indistinguishable
[12(b)]. Overall the agreement appears good. Also
shown is the RPA result at the same value of k, which is
markedly different as is well known by now [13].

We shall now discuss the significance of our result: (i)
A*=B* =0, which we have justified above, conslsts of
two exact physical relations at r,=r¥: y=3%x2 g(0)
=1— % (x/w,)? Both imply that the momentum distri-
bution n(k) is far from that of the ideal (r,=0). Al-
though having arisen in a high-k analysis of the moments,
these relations do not refer to k. Thus, they may be used,
for example, as a test of accuracy for numerical methods
of calculating the one- and two-body distribution func-
tions. (ii) At r;=3.5, g(0)=0.08. An electron has a
very small but finite probability of being at another’s
center. [At this density, gRPA(0) <0.] The physical re-
quirement of a non-negative g(0) means that u =0 [see
(13)]. In our work, u* =0.13 [see (14a)]l. At high k, x
is an essential parameter in the moments, hence, also
in S(k) and S(k,w). The value of x is strongly r; de-
pendent, e.g., x*=0.73 versus x(r,=0)=0.6. (ii)
S*(k,w) is of a quadratic maximum, centered on
wo=a=hk%2m— %x*+ - -- (natural units), and it has
high- and low-frequency tails. These features recall the
work of Sokol ef al. [7] on the inelastic scattering of neu-
trons from liquid *He in the “impulsive” domain
(k> 2kr), where only single-particle scattering is said to
occur. Our structure factor at k —2kr (see Fig. 2) also
has an appearance of scattering from a system in single-
particle states. But they are not the free particle states
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FIG. 2. S(k,w) vs o. Experimental (dashed line), Ref.
[12(a)]; Eq. (10) (solid line); RPA (dotted line). The vertical
scale is arbitrary.

because, at this k, the recoil frequency is still not that of
a free particle. (iv) As k becomes larger, the assumption
becomes less important to the moments. Thus, in the
“impulsive” domain, (10) can be essentially free of the
constraint r; =r; and be applicable at r;=r¥. If k is not
very large (k~2kr), in the neighborhood of r; =r one
may obtain S(k,w) approximately by our perturbation
method using (10) as a basis [14]. (v) The structure of
the moments (7) is also realizable in other systems, e.g.,
liquid *He, a semiclassical gas [15], and magnetic solids
[16]. Thus (10) has other possible applications [17].

Finally the relaxation function Z;(¢z) can be obtained
from (9):

Ek(l)‘—‘.,L_lék(Z)

s—1 *.,2 31/2
F(s) “utTleos(Q*r*u)*du

=P(s }—'—Q*t2/4) (15)
where @ is the Kummer function [18]. Observe that
Zx(—1)=E,(t) and EZ,(t=0)=0 as required [2(a)].
The short-time behavior is elementary. The long-time
behavior is given by an asymptotic property of the Kum-
mer function [19],

Ex(t— 00) =T'(3)/T(3 —s)(Q*t?/4) ¢

~t7F (s=%), (16)

another example of slow decay in a Hermitian system
[20]. Observe, however, that the exponent 2s =23k %/8x*
is already far from the classical value 3 when k =2kp.
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