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Critical Behavior of the Hall CoefBcient of Si:B
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Measurements between 0.05 and 1 K in magnetic fields small enough to ensure linear response (8 & 1

T) indicate that the Hall coefficient of Si:B diverges at the metal-insulator transition. This is similar tp
Ge:Sb and differs from the finite behavior claimed for Si:As and Si:P. Our result may be due to strong
spin-orbit effects; it is inconsistent with a recent suggestion that the Hall coe%cient is finite in systems
with critical conductivity exponent p = 2 .

PACS numbers: 71.30.+h

The metal-insulator (M-I) transition in doped semicon-
ductors has received a great deal of theoretical [1] and
experimental [2] attention over the past decade. Al-
though substantial progress has been made in our under-
standing of the transition, it is surprising that several
rather important issues remain unresolved. Among these,
the behavior of the Hall coefficient near the transition is a
particularly interesting problem of fundamental impor-
tance.

The critical behavior of the longitudinal component of
the zero temperature conductivity, tr(0) = tTp[(n/n, )
—1]",has been studied in detail in many doped semicon-
ductors as well as in amorphous metal-semiconductor sys-
tems. By definition, the transition to the insulating phase
occurs at a critical concentration n, where the zero-
temperature conductivity vanishes (the resistivity tends to
infinite at 0 K). The critical conductivity exponent p,
which is generally assumed equal to the critical exponent
v that characterizes the divergence of the correlation
length, is found to be approximately 1 in most systems.
There are a few notable exceptions, namely, amorphous
Ar:Ga [3] and all the silicon-based semiconductors, Si:P
[4], Si:B [5], Si:As [6], Si:Sb [7], and double-doped
Si:P,As [8] where, for reasons that are not yet under-
stood, p is smaller than 1 and closer to & . In contrast,
the Hall coefficient has been studied in very few materials
near the M-I transition and it is not clear under what cir-
cumstances it diverges at the critical concentration.
Thus, for example, the Hall coefficient has been found to
diverge in Ge:Sb [9] and the amorphous systems Bi:Kr
[10], Nb:Si [11],Pt:Si [12], and (Gap 9Bip i),Ari -„[13],
while it was found to remain finite in Ar:Ga [3], in In203
films [14], and in the doped semiconductors Si:As and
Si:P [15].

Electron-electron interactions and localization associat-
ed with the spatial disorder of the dopant atoms are both
important at the transition. Interactions are responsible
for a decrease in the density of states at the Fermi ener-

gy, while localization causes a decrease in the charge
diA'usion D. When the transition is driven by interac-
tions, the density of states vanishes at the Fermi energy
and the Hall coefficient diverges [16]. On the other hand,
at a localization transition the charge diAusion D van-

ishes, and a scaling calculation for noninteracting elec-
trons by Shapiro and Abrahams [17] predicts that the
Hall coefficient should remain finite. Consequently, finite
Hall coefficients have been attributed to localization,
while diverging coefficients have been attributed to
electron-electron interactions. These assumptions have
been called into question by recent calculations of Wang,
Wang, Kotliar, and Castellani [18], who, contrary to the
earlier calculation, claim that the Hall coefficient should
diverge at a localization transition or, in eA'ect, that the
coeIIicient Rtt = (ne) ' probes only the extended states.
In light of these recent findings, it is particularly puzzling
that Rtt is finite in some materials [3,14,15] at the
metal-insulator transition.

Two systematic studies of Rtt in nominally uncompen-
sated crystalline doped semiconductors have yielded
diAerent results. The Hall coefficient was found by Field
and Rosenbaum [9] to diverge in Ge:Sb, and it was
claimed finite at the transition by Koon and Castner [15]
in Si:As. Some early data [191 on Si:P have also been
reinterpreted as showing noncritical behavior [15]. It has
been suggested [20] that strong spin-orbit scattering may
be responsible for the divergence in Ge:Sb and some
amorphous systems [13]. Based on the few experimental
results currently available, it has also been noted [21]
that the Hall coefficient appears to diverge in all materi-
als except those where the conductivity exponent p = —,'.
Support for this conjecture has recently been provided by
experiments of Bogerhausen and Micklitz [13], who
demonstrated that an increase in spin-orbit scattering
through the substitution of 10% Bi for Ga in Ga:Ar re-
sults in a change in the conductivity exponent from 2 to
1 and a change in the Hall coefficient from finite to diver-
gent.

The purpose of the experiments described below was to
test these conjectures by measuring the Hall coefficient of
Si:B. There are strong spin-orbit eA'ects [5] associated
with scattering by impurities between the degenerate
heavy- and light-hole J= 2 valence bands in p-type Si:B.
If spin-orbit eAects are indeed important in determining
the behavior of the Hall coefficient near the transition,
one should observe a diverging R~. On the other hand,
the conductivity exponent of Si:B is closer to 2 than it is

1968 1993 The American Physical Society



VOLUME 70, NUMBER 13 PH YSICAL REVIEW LETTERS 29 MARCH 1993

TABLE I. Room-temperature resistivity p(300 K), resis-
tance ratio R(4.2)/R(300), dopant concentration n, and con-
centration normalized to the critical concentration, n, =4.06
X 10' cm

p(300 K)
(10 ' 0 cm)

14.3
14.9
15.5
15.9
16.3
16.9
17.0

R (4.2)/R (300)

1.269
1.436
1.662
1.853
2. 124
2.600
2.728

n
(10"cm ')

5.22
4.93
4.68
4.53
4.37
4.16
4. 1 1

n/n,

1.29
1.21
1.15
1.12
1.08
1.02
1.01
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FIG. 1. Hall coeScient of Si:8 as a function of temperature
for seven dopant concentrations, as labeled. For the sample
with n=4. 16X10' cm, the inset shows that the Hall resis-
tivity is linear with magnetic field up to 1 T at O—0.05 K,
O—0.2 K, and 0 —1.2 K.

to 1, so that the classification scheme that relates R~ to
the value of p would imply the Hall coefficient should
remain finite.

Samples were cut from 0.3-mm-thick, 5-cm-diam
wafers of Czochralski-grown Si:B obtained from Pensilco
(now Puresil). Seven samples were used in these studies
for which Table I lists room-temperature resistivities,
resistance ratios R(4.2 K)/R(300 K), and dopant concen-
trations using the Thurber scale [22]. All samples were
etched in a CP-4 solution to remove any damaged surface
layer before electrical contacts were made. Ion implants
were necessary to ensure good contact and gold wires
were attached to all samples by a special arc discharge
technique [23]. The Hall coefficients were measured in

an Oxford Model 75 dilution refrigerator at temperatures
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FIG. 2. The Hall number (Rn) ' as a function of T'~ for
seven Si:B samples with dopant concentrations as labeled. The
dashed lines represent linear regression fits to the data.

down to 50 mK in magnetic fields below 1 T. Samples
were immersed directly in the He- He mixture in order
to achieve good thermal contact and to mount samples
free from stress. Measurements were made with a PAR
124A lock-in amplifier at 17.5 Hz at the lowest tempera-
tures and with a A VS-46 ac bridge at temperatures above
a few hundred mK. DiAerent excitation currents were
used to ensure there was no self-heating. The longitudi-
nal component due to slight misalignment of the contacts
was eliminated by either reversing the magnetic field or
interchanging current and voltage leads [24], with both
methods yielding consistent results.

The Hall coefficient is plotted as a function of tempera-
ture in Fig. 1. Measurements were limited to magnetic
fields below 1 T to ensure linear response. This is demon-
strated in the inset, which shows the Hall resistivity of
one sample taken at three temperatures for magnetic
fields up to I T. We note that earlier measurements [25]
in Si:B demonstrated that the critical exponent for the
longitudinal conductivity changes in a magnetic field.
We stress that the exponent was found to be essentially
unaltered from its zero-field value at 1 T, and we there-
fore expect that measurements of the Hall resistivity in

fields below 1 T yield meaningful zero-field extrapola-
tions.

In the absence of electron correlations, a temperature-
independent Hall coefficient is expected by scaling theory
[17], while electron-electron interactions give rise [26] to
square-root corrections in three dimensions. The strong
temperature dependence of the data of Fig. 1 indicates
that interactions play an important role, particularly very
near the transition and at very low temperatures. We as-
sume, then, that the Hall coefficient is given by the sum

1969



VOLUME 70, NUMBER 13 PHYSICAL REVIEW LETTERS 29 MARCH 1993

l2—

O
t

Q s

5.8 4.2 r.o
p (IQ' cm )

jFIG. 3. Zero-temperature extrapolations of the Ha/1 number
plotted as a function of dopant concentration. The solid line is
a best fit by Eq. (2) with n, =4.06x 10's cm s and hatt =0.45.

of two terms

[R (0)] '=[R ] '[(n/n, ) —1]"" (2)

yield a critical concentration for Si:8 consistent with the
value n, =4.06x10' cm determined in earlier studies
of the longitudinal conductivity [5], a critical Hall con-
ductivity exponent ptt =0.45 and a prefactor [Ro]
=21.4 & 10 T/0 cm.

The Hall coefficient of Si:8 is quite similar to that
found by Field and Rosenbaum [9] in Ge:Sb. In both
systems, the coefficient diverges and does so more rapidly
than the longitudinal resistivity. Thus, in Ge:Sb the criti-
cal Hall conductivity exponent, pz =0.69, is smaller than
the exponent for the longitudinal conductivity, p =0.9.
Similarly, in Si:8, p~ =0.45 compared with p =0.65. On
the other hand, both materials behave quite differently
from Si:P and Si:As, where Koon and Castner's [15]
measurements indicate that the Hall coefficient remains
finite. We note that Si:8 has a critical conductivity ex-
ponent similar to Si:P and Si:As, or near 2, while the

[Rtt(T)] '=[Rtt(0)] '+mttT'

and plot [Rtt] ' as a function'of T'I for Si:B in Fig. 2.
The data are consistent with Eq. (1), although the pre-
cision of the measurements is insufticient to establish that
this is indeed the correct expression. Deviations from this
simple form are increasingly evident as the transition is
approached. Linear-regression fits by Eq. (1) were car-
ried out using data up to 0.5 K (T'I =0.71) for all sam-
ples except the two samples closest to the transition,
where the range was restricted to data below 0.2 K
(7.'"=0.4S).

The zero-temperature intercepts, [Rtt(0)l ', are plot-
ted in Fig. 3 as a function of impurity concentration. Fits
of the data by

critical exponent for Ge:Sb is near 1. The critical behav-
ior of Si:8 is thus inconsistent with the suggestion that
the Hall coefficient is finite in systems with critical con-
ductivity exponent p = 2. It has also been suggested
that strong spin-orbit scattering could be responsible for
the divergence. Indeed, spin-orbit eft'ects are known [5]
to be important in Si:8. We point out, however, that the
critical exponent for the longitudinal conductivity of Si:8
is not equal to 1, as expected in the presence of strong
spin-orbit scattering. We think it is unlikely that spin-
orbit eAects determine the behavior of the transverse con-
ductivity but not that of the longitudinal transport. Reso-
lution of these questions requires further experimental
work on well-characterized materials down to very low
temperatures.
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