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Internal Fluctuations and Deterministic Chemical Chaos
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The eA'ects of internal noise on chaotic and periodic dynamics of a chemical system are inves-

tigated. Calculations are carried out for a mesoscopic model of the Willamowski-Rossler reaction,
a mass-action model that displays deterministic chemical chaos. The model incorporates internal
fluctuations that arise from the reactive and diffusion processes in the system. The character of
the noisy dynamics is analyzed and questions related to the validity of deterministic models in the
chaotic regime are discussed. The interplay among spatial degrees of freedom, system size, and
internal fluctuations are studied for this chaotic dynamical system.

PACS numbers: 0.5.45.+b, 05.40.+j, 05.60.+w, 82.20.Wt

Low-dimensional chaos in dissipative dynamical sys-
tems is one of the most widely investigated topics in
nonlinear dynamics. Its ubiquity in a variety of physi-
cal contexts and the fact that a few well-characterized
scenarios describe its onset have been responsible for the
intense activity on its origin and properties.

Chemically reacting systems have provided some of the
most clear-cut examples of deterministic chaos [1]. The
theoretical description of low-dimensional chaos is based
on the ordinary nonlinear differential equations of mass
action kinetics, constrained in some way to maintain the
system out of chemical equilibrium. This description as-
sumes that the chemical system is well stirred and that
inhomogeneities arising from incomplete mixing or inter-
nal fluctuations do not affect the basic features of the
phenomenon.

Deterministic chaos manifests itself as a structured
aperiodic motion of the trajectory of the system in the
phase space of the macroscopic chemical concentrations.
This macroscopic chaotic dynamics has its origin in the
molecular reactive and elastic collision processes in the
system, and the effects of local concentration fluctuations
that arise from these collisional events must be accounted
for in a full description of the chaotic dynamics. When
the deterministic system is chaotic, fluctuations can have
pronounced effects on the dynamics since nearby phase
points diverge exponentially with a mean growth rate
given by the maximum Lyapunov exponent. The effects
of external noise on chaotic dynamics have been studied
in some detail [2]. Internal noise arising from the molec-
ular nature of the system is also expected to have impor-
tant effects but here the problem is more subtle. Fox and
Keizer [3] pointed out that that the growth of intrinsic
fluctuations is governed by the 3acobi matrix, which also
determines the I yapunov exponents. They argue that
the macroscopic rate law loses its meaning since fluctu-
ations grow to macroscopic size and are comparable to
the mean values of the macroscopic dynamical variables.
This interpretation has been questioned by Nicolis and
Balakrishnan [4].

In order to investigate this problem one must describe
the system at a level that goes beyond the determinis-

tic chemical kinetic equations. Both master equations
[4] and approximate Fokker-Planck equations [3] have
been used for this purpose. Here we employ the reactive
lattice-gas automaton method [5] to construct a meso-
scopic description of a reacting system whose underly-
ing chemistry gives rise to deterministic chaos, This ap-
proach is based on lattice-gas methods formulated for hy-
drodynamics [6] and in the reactive case can be viewed as
a type of implementation of the master equation method.
Consequently, internal molecular fluctuations and spatial
degrees of freedom are naturally incorporated in the de-
scription. In this Letter we study the interplay of inter-
nal molecular fluctuations, spatial degrees of freedom and
system size, and their effects on the structure of macro-
scopic, deterministic, chemical chaos. Our calculations
provide rather direct information on the effects of inter-
nal noise on systems that manifest deterministic chemical
chaos and, therefore, can be used to discuss the questions
posed above concerning the validity of the macroscopic
description within the context of the automaton dynam-
1cs.

While numerous model chemical rate equations exhibit
deterministic chaos, from a microscopic perspective it is
especially interesting to focus on models whose mass ac-
tion kinetics, as embodied in a chemical mechanism that
reflects the microscopic forward and reverse reactive col-
lision processes, is capable of yielding chaotic dynamics,
A model introduced by Willamowski and Rassler [7] is
of this type. The reaction mechanism involves only bi-
molecular steps and is given by

A, +X = 2X, A+ V = 2y;
A:

A:3 k4
Ag+Y = A2, X+Z = A3,

A: A: 4

A4+Z = 2Z,
k

where K = (ky, . i = 1, . . . , 5) is a set of forward and
reverse rate constants. In order to force the system out
of equilibrium the concentrations of the set of species
A = (As: j = 1, . . . , 5) are assumed to be constant. In
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FIG. 2. The Poincare map constructed from Fig. l. Open
circles, automaton simulation; closed circles, deterministic
simulation.

the flow with the Poincare surface of section. The well-
defined chaotic bands of the deterministic attractor (cf.
Fig. 2) have merged.

The strange attractor arises through a period-doubling
cascade and insight into the nature of the internal noise
eEects on the dynamics can be obtained by consider-
ing system parameters in the periodic regime. Figure 3
sho~s the result of a simulation deep within the period-
one regime. Intrinsic noise produces no dramatic efFects;
it simply produces a "thick" limit cycle in the vicinity of
the deterministic limit cycle.

Internal fluctuations have pronounced e8'ects on the
dynamics of period one in a parameter range closer to
the chaotic regime. Figure 4 shows the Poincare map
of such a noisy attractor. (The attractor itself closely
resembles Fig. 1 and is not displayed. ) The noisy iter-
ates are again spread out in a linelike fashion with small
thickness, reminiscent of the Poincare map for the chaotic
attractor; however, there is concentration of iterates at
the Poincare map fixed point corresponding to the stable
limit cycle. Considering the Poincare map of the flow in
the chaotic regime, the strange attractor can be viewed
as the closure of the unstable manifold associated with
the hyperbolic points of the map [10]. Periodic orbits
near the chaotic regime are embedded in this complex
hyperbolic manifold structure. Thus, addition of noise
to such a system is likely to cause the system to explore
the underlying manifold structure and cause the iterates
to spread strongly in the unstable directions, just as in
the case of the chaotic attractor, except the eKect is some-
what more dramatic since one starts with a periodic or-
bit. These eKects have been observed earlier for both
external noise [2] and a Langevin model [ll]. Figure 4
also shows the Poincare map for external noise applied
to the deterministic rate law. Internal and external noise
have a qualitatively similar eÃect on the phase-space dy-
namics. This is so in spite of the fact the automaton
dynamics does not rely on the existence of a, macroscopic
rate law, and in a strict sense the deterministic manifold

FIG. 3. Noisy limit cycle for the same parameters as
Fig. 1 except fez = 1.3. The box origin is at (x, y, z)
= (0.16056, 0.16938, 1.05147) with corners along the x, y, and
z axes at 0.55263, 0.85461, and 3.04752, respectively.

structure that is used to rationalize the behavior of ex-
ternally forced systems does not exist. The fluctuating
automaton dynamics is able to give rise to an incipient
or fragmented dynamical structure in the concentration
phase space that mimics the unstable manifold structure
of the deterministic system and controls the character of
the dynamics.

If large system sizes are considered or the reactive colli-
sion frequency is increased relative to the nonreactive col-
lision frequency, the unstirred system is unable to main-
tain its homogeneous character. This leads to desynchro-
nization of local regions in the system and the dynamics
takes on a complex spatial as well as temporal character.
This is shown in Fig. 5 where the local concentration of

o+
0
0

1.2—

z 1.0—

0 0

f I

0.4 0.6 0.8 1.0 1.2 1.4 1.6

FIG. 4. The Poincare map for the parameters of Fig. 1
except r2 ——1.4 (open circles). Also shown is the Poincare
map constructed from the rate law (2) with bounded e~ternal
noise on all three concentrations (closed circles). The noise
amplitude was selected to be comparable to that observed in
the automaton simulation. The large heavy dot denotes the
position of the limit cycle.
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I IG. 5. Simulation for a set of 200 x 200 lattices with sys-
tem parameters of Fig. 4 and a diffusion coefficient 10 times
smaller. The Z concentration is displayed as gray shades,

bifurcation sequence in parameter space and the coarse
structure of the attractors for the fluctuating medium.
The magnitude of the internal fluctuations as a function
of the system's parameters can be determined only from
the full microscopic dynamics, and quantitative state-
ments regarding attractor modifications cannot be made
on the basis of the deterministic equations. With this
proviso, one may say that even under finite-amplitude
internal noise the macroscopic equations retain some of
their predictive power. The observed effects of internal
fluctuations are consistent with the structurally stable
character of the chaotic flow and the fact that in the
chaotic regime the invariant density retains many gross
features of its deterministic analog [4].

This work was supported in part by a grant from the
Natural Sciences and Engineering Research Council of
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the Z chemical species is displayed in the 2D real space.
The attractor occupies a smaller volume in phase space
due to this desynchronization process. The full investiga-
tion of internal noise on such spatiotemporal dynamics is
easily carried out in the context of the mesoscopic model
described here.

Our calculations have shown that intrinsic fluctuations
can have pronounced effects on the dynamics of systems
close to and in the chaotic regime. The automaton mean-
field equations, which are the mass-action rate equations
(2), yield results which differ from the full automaton
dynamics due to fluctuations: Deterministic period one
is transformed into a noisy "strange attractor" and a
strange attractor may suffer dephasing and smoothing.
Fluctuations do give rise to significant effects on the scale
of the attractor size in phase space [3].

Given these facts it is important to discuss whether
the determinisic mass-action rate law is useful for the
analysis of the system's dynamics in or near the chaotic
regime. One can view the automaton results as experi-
mental observations for a system obeying the automaton
microscopic dynamics. If one compares the bifurcation
sequence (period-doubling cascade in this case) leading
to chaos for the deterministic and automaton dynam-
ics, one observes that internal noise shifts the bifurcation
points, limits the number of period doublings that can
be observed, and leads to band merging of the deter-
ministic attractor. All of these effects have been noted
earlier for external noise applied to nonlinear dynami-
cal systems [2]. Our results show that the deterministic
equations along with a knowledge of their manifold struc-
ture can be used to predict the general location of the
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