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A method for calculating total cross sections without formally including nonelastic channels is present-
ed. The idea is to use a one channel T-matrix variational principle with a complex correlation function.
The derived T matrix is therefore not unitary: Elastic scattering is calculated from ~T~, but total
scattering is derived from the imaginary part of T using the optical theorem. The method is applied to
the spherically symmetric model of electron-hydrogen scattering. No spurious structure arises; results
for o,] and atpt l are in excellent agreement with calculations of Callaway and Oza. The method has
wide potential applicability.

PACS numbers: 34.80.Bm, 34.80.Dp, 36.10.Dr

Although it is well known phenomenologically how to
modify the scattering formalism so as to calculate total
cross sections including only the elastic channel explicitly
[1], it has been a much more difficult task to do this in an
ab initio yet practical way. One approach along these
lines, developed by Rescigno and Reinhardt [2], con-
structs the Fredholm determinant using an I basis set;
results for model problems were very satisfactory. The
method, which involves a rather elaborate analytic con-
tinuation analysis, was extended to the static (i.e. , no ex-
change) approximation for electron-hydrogen scattering
[3].

Kindred methods have been applied to real problems
including positron-hydrogen scattering [4], and electron-
hydrogen and lithium scattering [5], with very good re-
sults. However, these methods and calculations have
been confined to the lower energy (inelastic and ioniza-
tion) regime, in contrast to our method, which is here
directed at purely the ionization region going up to much
higher energies. Also, as will be seen, our method is very
simple in principle and widely applicable.

Other methods for deducing specific and total cross
sections have been applied to a model of (5 wave) e-H
scattering introduced by one of us [6], which is rich
enough to include resonances and inelasticity [7]. We
have recently generalized the model (for use as part of a
new, proposed dispersion relation for e-atom scattering)
[8] by writing it as a full Schrodinger equation (Ry units
throughout):

[—V1 —V2 —2/r ( —E]+„,(r1,r2) =0.
The model interaction, 2/r & (where r & is the lesser of
r1, r2), is derived from the full interaction, —2/r1 —2/
r2+2//r12, by retaining only the spherically symmetric
term in the expansion of 2/r 2. W1e have called this the
spherically symmetric model [8]; to reduce (1) to its ex-
plicit, partial wave form, one expands the most general
form of solution in this model containing the ground
state,
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and inserts it into Eq. (1) to derive (i =1,2)
(2)
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with appropriate boundary conditions for yL' and yI
for r1~ r2 (with + for singlet and —for triplet)

lPL (r1, r2) = +' I/fL' (r2, r1),

lim I/fg' (r1, r2) =
OO
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The model even in its 5-wave form has proven to be
nontrivial: We expanded the solution in terms of exact
separable solutions and minimized the deviation from the
exact boundary conditions along r1=r2 [6,7]; but severe
round-oA problems are encountered when too many such
terms are included. Subsequently, Poet [9] overcame
these problems by perturbing the higher separable terms
in such a way as to keep the round-oft errors under con-
trol. His remarkably accurate results are in agreement
with those we had previously obtained; in addition, he
calculated cross sections at such a fine energy grid as to
obtain the resonant structure that arises for k & 1. Of
prime importance, both sets of results showed significant
deviations from close coupling [10] and pseudostate re-
sults [11], the major differences occurring as a result of
spurious pseudothreshold eAects in the latter. Later cal-
culations [12,13] continue to show this phenomenon, al-
though suitably averaging over artificial resonances yields
reasonably accurate cross sections as Callaway and Oza
[14] have more recently confirmed, by numerically in-
tegrating Eq. (3) (for L =0).
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Specifically we here take the correlation function to be of
the form

et-}= "'"""""Y,(r )Y, (r )
W

&& g C„ r", r2 ~ (r, —r,),
n, m

(5)

where the y; are complex: y; =y; +iy& (For conve. r-
gence of all integrals y; )0.)

The Kohn T-matrix variational principle [13] corre-
sponds to 6(IL —i TL) =0, where the functional IL is

IL =&+i I
H E I

+—L) . — (6)

+L is constructed from +L [cf. Eq. (5)] by complex con-
jugating only the spherical harmonics, not the y; nor the
C „. Thus TI, which is obtained from the asymptotic be-
havior of ul. (r),

lim ul (r) = —sin(kr —zL/2)+ TLe' ',1

p'~ oo k

will not be real, nor will it be unitary (o',}&aT),where

(7)

=47r(2L+1) ~Tg~ cr =(4'/k)Im(Ti, ) . (8)

The nonunitarity is, we maintain, an advantage, be-
cause (and this is the thesis of our argument) if the long-

range part of +~ is dominated by the elastic channel
(meaning elastic scattering is, by far, the largest individu-

al cross section in the energy range with which we shall
be concerned), then all remaining channels correspond to
absorption, and they have their dominant eAect in the in-

terior part of the wave function. The complex correlation
function has the capability of mocking up the oscillatory
behavior of both electrons to reasonably large radial dis-

Most recently Bray and Stelbovics [15], using a many
term close coupling expansion in a T-matrix integral
equation formalism, obtained smooth results when the
number of states was large enough. Although it is not
clear from their paper, the method did include positive
energy pseudostates, which were found to be necessary to
reproduce the correct magnitudes of the various cross sec-
tions [16]. We would have expected pseudoresonant
structure to have shown up near pseudoresonant thresh-
olds, but none has been seen in the converged calculations
[15,16]. The results are, nevertheless, very impressive.

The method which we shall put forward in this Letter
is quite diA'erent. We shall utilize a one channel Kohn
T-matrix variational principle as developed by Schneider,
Rescigno, McCurdy, and Lengsfield [17], but using a
complex correlation function @L. For electron-hydrogen
scattering this means using a wave function of the form
(with + for singlet and —for triplet)

uL(r})
YL (» ~ )p }p (r 2) Ypp (r 2)

r~

tances, if (in this calculation the complex exponents of)
the correlation function is suitably chosen.

The proof of this pudding is obviously in the eating,
and we have tested it on the spherically symmetric model
[6-8] described above. We use an optical potential for-
malism, whereby uI. of Eq. (1) satisfies

d L(L+1) + V ~ V,„+V, —k2 =0,
dr2 r2

where Vd and V,„are static and exchange terms, and the
optical potential is expanded in the usual way:

(„} & YLp Ypp (H —E )QN, )& Q&, (H —E )P +L )
V.,u,'"}=r

E —8,
(10)

The eigenspectra, @, and 8„come out of a QHQ calcula-
tion, about which we need only say that, given the form
+I above, 6, and hence Vop are complex.

One technical item of note is that the P (and Q) opera-
tors that are called for in the program that is used (see
below) are not the usual ones (P =P}+P2—P}P2) but
rather

P =P~+P2 2P|P2,

where the projectors have their usual meaning: P;
=P}p(r;))&P&p(r;). One can easily show that this opera-
tor, and the corresponding Q =1 P, are also ide—mpotent
and have the necessary asymptotic properties. What this

Q does do is to give one added eigenfunction to the QHQ
problem, simulating the (1s) state of H (at
= —0.78 Ry). This term must be included in the optical
potential, but it causes no resonance because the numera-
tor also goes to zero at the same E. Moreover, this form
of P turns out to be a special case of the projection opera-
tors already used in a many-electron Kohn formalism of
Schneider, Rescigno, McCurdy, and Lengsfield [17,18].

In the present calculation, the @, and 6, are deter-
mined as an ordinary QHQ problem [19],using the above

Q operator and the program minimally generalized to
handle complex @. The uL are parametrized and the pa-
rameters plus the T matrix are determined from the con-
ventional variational equations using a previous program
[17,18], also suitably modified to handle a complex opti-
cal potential. Linear constants are determined by the
usual Kohn equations: 8IL/BC „=0,BIL/BTI. =i

Results will, of course, depend on the nonlinear param-
eters. It is not yet clear at this initial stage of the metho-

dology to what extent absolute stationarity with respect
to them can be achieved and would be meaningful. Nev-
ertheless, criteria for a reasonable choice are clear: They
must be such as to yield all @, with a negative imaginary
part (corresponding to absorption from the elastic chan-
nel), and, for any given set of y;, results should converge

1937



VOLUME 70, NUMBER 13 PHYSiCAL REVIEW LETTERS 29 MARCH 1993

TABLE I. Results for 'S cross sections in the spherically symmetric model. Cross sections,
in a$, do not include statistical factor. Upper entry corresponds to crd, lower entry to err. Non-
linear parameters are —

y~
= —

y2
= —0.6+i (0 1)..

1.0

20

4. 13
4.78

25

4. 10
4.72

30

4. 17
4.80

36

4. 10
4.75

Callaway A, Oza'

4. 12
4.76

3.62
4.25

3.57
4.27

3.54
4.21

3.60
4.26

3.53
4.39

1.21 3.10
3.84

3.10
3.76

3 ' 1 1

3.82
3.10
3.79

3.07
3.77

1.44 2.43
3.09

2.40
3.15

2.45
3.13

2.44
3.13

2.42
3.13

1 ~ 7 1.99
2.67

1.97
2.61

1.95
2.63

2.02
2.67

1.97
2.63

2.0 1.60
2. 18

1.66
2.28

1.66
2.23

1.64
2.25

1.65
2.24

2.25 1.47
1.96

1.40
1.96

1.47
2.02

1.46
1.99

1.43
1.99

2.50 1.37
1 ~ 82

1.27
1.74

1.27
1.80

1.33
1.82

1.29
1.78

3.00 1.10
1.55

1.13
1.50

1.06
1.44

1.06
1.49

1.09
1.50

4.00

'Reference [14].

0.73
1.01

0.77
1.10

0.85
1.13

0.83
1.08

0.82
1.09

in a practical sense as N [the number of linear parame-
ters in N; cf. Eqs. (5) and (10)] is increased. Most im-

portant cross sections must be such that o.T ~ cr,~.

Table I contains results for the 'S partial wave. It is

gratifying that a single set of y~ =y2 does satisfy the
above criteria. Other reasonable sets have been tried,
and —providing problems of linear dependence do not
arise —they yield similar results. Most significantly, the
results compare very favorably with Callaway and Oza
[14]. We have also examined results on a fine mesh in k
and we find no spurious resonances (nor should there be
any) in the ionization domain.

In conclusion, it is evident that the method should be
applicable and useful in a practical way for whole variety
of many-electron target systems. In addition, the method
can clearly be generalized to include any (group of)
discrete states explicitly, the remaining ones being then
implicitly included as above, with the Q operator aug-
mented appropriately. And finally, one can readily apply
the method to positron scattering, where (if one is in-
terested in total cross sections) it avoids the necessity of

including the very difticult positronium formation chan-
nels altogether [4].

The work of two of us (A.T. and A. K.B.) has been
done under the aegis of NASA RTOP No. 170-38-51.
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