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Calculation of the Density of Resonance States Using the Stabilization Method
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The stabilization method is used to calculate the density of resonance states and when applied to
isolated resonances yields a most simple method for extracting the resonance energy and width.

PACS numbers: 34.10.+z
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I'IG. 1. Eigenenergies F~ as a function of the box size L
for the potential in Eq. (10). The potential is shown as the
thick curve.

The stabilization method is usually presented as a
method for obtaining resonance parameters, resonance
energy E„„and total width I' from 8 bound state type
calculations [1—10]. For the purposes of obtaining exclu-
sively E„, and I' scattering methods are known to be
more diKcult than necessary.

The simple stabilization method repeatedly diagonal-
izes the Hamiltonian in the basis sets of ever larger ex-
tension (L) from what is believed to be the region where
the resonance wave function is localized. (Q space [11],
which is here taken as the localized space, operator Q
projecting onto it. P space contains the asymptotes and
is the orthogonal complement space. ) Here for simplic-
ity we use a basis set complete over the energy range of
interest in a box of size I (see, e.g. , [2, 3, 5]). The result
is a stabilization diagram of the eigenenergies E~(L) vs
I as seen in Fig. 1. The physical origin of the flat re-
gion hinges on the fact that the resonance scattering wave
function, unlike other continuum solutions, is localized at
short range and, as such, its energy converges, i.e. , is sta-
bilized, at L beyond the Q region. 8 states mimicking
nonresonant scattering states do not have this property

and their energies generally decrease with L.
In this paper we give a particularly simple way to ex-

tract from the stabilization diagram the density of res-
onance states p~(E) which for isolated resonances gives
E„, and I'. The method does not need the wave func-
tions [4, 10], nor does it use analytic continuation of the
energy in the complex plane [7—9] or arguments about the
asymptotic form of the wave functions [1—3]; it also does
not have to calculate p@ by first finding (in a scattering
computation) the collision lifetime matrix [12]

dS*
Q =ihS

then using the formula [13, 14]

(2)

The method does not use imaging techniques [15] or com-
plex potentials [16].

In the following we will present a novel approach for
calculation of the density of resonance states using the
stabilization method and then demonstrate its use on
one- and two-channel model problems.

Calculation of the density of resonance states. —The
method is based on the density of states obtained at a
value of L. This density should have a contribution from
two regions which we symbolize by writing

pi(E) =
C ~ (E) + l i (E) .

p& (E) is the expected resonant part which stabilizes, be-
coming independent of I, for L outside the Q region and
which for a case of an isolated resonance is expected to
be (see, e.g. , [14])

I'/2

(E„,—E)'+ I'2/4

Parenthetically, for overlapping resonances, where E„,
and I' cannot be defined, p will stabilize with a shape
that varies from problem to problem but which can be
I"ourier analyzed in various resolutions to give insights
into the frequencies and dynamics of the finite lifetime
complex whose states are the overlapping resonances.
Here, for simplicity, we deal with the isolated resonance
case although our approach should work for the overlap-
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ping resonance case.
Now, p+z(E) is that part of the density of states that

comes from the background and for B.xed L it should
vary smoothly with energy and, more importantly, be
very small at the resonant energy and inside the range
Q. Physically the P-space scattering does not start until
the "packet" leaves the inner Q region. As such a method
that computes pl, (E) as a function of L should show a
region of L where a Lorentzian shape exists for pl, (E)
itself; this defines the Q region.

The problem now reduces to calculation of pl, (E),
which is given by the formula

al-(E) = ).~(Eg(L) —E)

where E~ (I ) are the box eigenvalues of the system. This
formula, being represented by a stick diagram, is usually
useful only at such large L, where the sticks are dense
enough to generate a histogram of pl, (E) and thereby
get pl. (E) as a smooth function of E The u. se of large
L forfeits the Z2 advantage. In contrast, for small I
expression (4) cannot be histogrammed and at first it is
not clear how to evaluate it.

Since we expect that pz~(E), the desired part of pr, (E),
is independent of L in any range AL outside the Q region,
we can average the right-hand side of (5) over parameter
L [17]:

[17] who computed a density for use in a density-density
correlation function but did not apply the idea to single
isolated resonances. Kim and Ezra evaluated the aver-
age by first smoothing the delta functions with C~aussians
and then by binning into histograms. This latter tech-
nique requires usage of data from many more L values
than required by Eq. (8). Further it is not part of a
larger theory to compute the spectral density [18].

It should be mentioned that the function (pl. (E)) is
now a continuous function of energy [pl, (E) is not] and
can be processed to extract p~(E). Note also that the
resonances come in Eq. (8) due to the fact that the
derivative dE~(L)/dL becomes very small in the neigh-
borhood of a resonant energy.

We expect and, as will be seen, find. that the averag-
ing, which makes possible the evaluation of pl, at small

L, will leave p unaEected and recognizable as it is inde-
pendent of L. Furthermore, making an assumption that
the resonant part of {pl.(E)) stabilizes at relatively small
L, where (pf (E)) is negligible, we can approximate p~
by the following formula:

In many real problems the part of (p&+(E)), (pcl (E))
that corresponds to the Hamiltonian for noninteracting
reactants and products Ho and which diverges at large
I is almost always known. This allows us to make an

approximation that is even better than Eq. (10)
{n(E)) = &L ' dI pl. (E) .

~~(E) = (ai(E)) —(Ci(E)) .

Using

(7)

results in the easily calculable [since dE&(L')/dL' are
available from Fig. 1] formula

(L/) I

(n(E)) = ~L). (8)

In order to decrease the statistical error we need to take
AL large enough that the number of eigenenergies E~ (L')
satisfying condition (9) will be sufficient for convergence.
In future papers, the above equations will be derived with
more rigor using the averaging technique to get the spec-
tral density whose trace is the density operator. We note
here, and it shall be shown, that Eq. (6) converges in
the limit AL approaching infinity. Up to Eq. (6), our
method bears similarity in spirit to that of Kim and Ezra

The index j sums the derivatives of the Ez vs L curves
in Fig. 1, at the intersections of the curves with the
constant E line, if they lie in the AL region over which
we have averaged

E, (L,') = E, I. —AL/2 & I' & L+ 2 I,/2 .

What is left out here is that part of p+~(E) in which the
interaction still exists. This, as said, is small and is easy
to remove, as will be seen.

The single channel emblem. Consider the radial
Schrodinger equation with potential

V(r) = Vor2e ". (»)
We restrict our analysis to the case with total angu-
lar momentum zero. We have used the same parame-
ter Vo =7.5 a.u. as was used in [2]. Eighty sine basis
functions were taken to obtain the stabilization graph for
boxes of radius L from 1 up to 20 a.u. The dependence
of eigenenergies Ez on I is presented in Fig. 1. This
system has a narrow resonance with energy E„,= 3.42
and width I' = 0.025 [2].

In Fig. 2 we present our numerical calculation of
(pl, (E)) for two diff'erent radii I, using Eq. (8). Both
curves are very similar (a Lorentzian on a pedestal)
except for a small difference in the background (the
pedestal) which depends on L and which can be easily
subtracted (method A). For even greater accuracy in this
simple case the divergent part of the p& can be estimated
by the formula for the free particle in a box,

L
&1.(E) = (13)

7r 2E
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The averaged density (pr. (E)) calculated using
Eq. (8) for two different box sizes L&=10 a.u. (squares) and
Lq=16 a.u. (hourglasses) averaged over the interval EL=6
a.u.

and the resonant density p~(E) is calculated with Eq.
(11) (method B). The result is shown in Fig. 3. The
theoretical density given by a Lorentzian IEq. (4)] with
E„, = 3.426 and I' = 0.0256 is also presented in Fig.
3. Here both methods A and B give the same result. It
is seen that the accuracy of the method is very high for
even relatively small L where the potential V(r) has not
achieved its asymptotic value (see Fig. 1).

The two-channel problem. —Here we consider a two-
channel model with Hamiltonian [19]

1
H = —— + Ho(z) + V(z, r),

2 dr2 (14)

where Ho(z) is assumed to have two states with energies
0.0 and 0.1 a.u. and r is associated with the reaction
coordinate. The explicit form of the optical potential V
(with z) is not needed. It suffices to know the following
matrix representation between states of Ho.

FIG. 3. The resonant density p~(Z) for the single-channe
roblern calculated using Eq. (9) (squares). ~he averaging

Procedure was carried out over the interval L g [7.0 13 0] a u .

The Lorentzian in Eq. (2) (continuous curve) has @,„=3426
a u and I =p p256

lating the density of states using only information from
the stabilization graph by a method that unlike other
real axis methods is valid, and accurate, in multichan-
nel cases. The method is numerically tested on two ex-
amples for one- and two-channel problems with isolated
resonances. In both these cases we were able with min-
imal numerical eKort to extract the resonance density,
and for isolated resonances, E„, and I as well with a
very high accuracy. The method is expected to work also
for a general multichannel overlapping resonance situa-
tion. We have not, in this Letter, addressed the issue of
the difhculty in computing the stabilization graph. This

1Z

—1.0 -7.5 lV~=U~r e ", U= (15)

As in the previous section we used a sine basis set with
160 functions for various values of the box size L. The
stabilization diagram is shown in Fig. 4 together with
the potential curves for the two channels. The density of
resonant states calculated using Eq. (11) is presented in
Fig. 5. The averaging procedure was carried out over the
parameter interval L C [9.0, 13.0] a.u. It turned out that
the calculated result exactly coincides with the theoret-
ical density given by the Lorentzian at E«,——4.768 a.u.
and I'=0.00142 a.u. in agreement with the exact results.

In conclusion, we have proposed a new approach for
calculation of the density of resonance states using the
stabilization method. The advance has been in calcu-
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I"IG. 4. The stabilization diagram for the two-channel
problem shown with potential energies for the two channels
(thick curves).
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FIG. 5. The resonant density p~(E) for the two-channel
problem calculated using Eq. (9) (squares). The averaging
procedure was carried out over the interval [9.0,13.0] a.u. ; The
Lorentzian in Eq. (2) (continuous curve) has E„,=4.768 a.u.
and I'=0.001 42.

depends on the nature of the problem at hand (e.g. , elec-
tron, heavy atom, ion-atom scattering, etc. ) We also
have not addressed the basis set representational prob-
lem, which again varies with the problem under study.

Applications of ideas similar to those given here can
be made in any problem where the physics is localized
at short distances. In future publications we shall dis-
cuss applications to the computation of absortion cross
section in photodissociation and to the computation of
microcanonical and thermal rate constants.
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