
VoLUMv 70, NUMBER 13 PHYSICAL REVIEW LETTERS

Helium Atom as a Classical Three-Body Problem
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The classical three-body problem of the helium atom is numerically studied. For most initial condi-
tions, orbits show chaotic transients until one of the electrons always escapes to infinity, leading to au-
toionization. For the remaining parts of initial conditions, several types of stable quasiperiodic motions
(on tori) are found, which have a finite measure in the phase space. This discovery enables us to treat
semiclassically a strongly correlated electronic system.

PACS numbers: 31.20.Tz, 03.20.+i, 05.45.+b

Gravitational three-body problems have been one of
the most important examples in nonintegrable Hamiltoni-
an systems. A three-body problem with a Coulomb in-
teraction, on the other hand, is of importance not only in

this context but also as a semiclassical approach to a
quantum problem. In the 1920s, some of the pioneers in

quantum mechanics struggled to make a classical model
of the helium atom [I]. Their approach is based on the
Bohr-Sommerfeld semiclassical quantization of periodic
orbits with special symmetry. These orbits include Bohr's
circular model [2], Langmuir s double circle and semicir-
cular models [3], and Lande's model [4], as are reviewed
in [1]. Their eAorts completely failed, however, mainly
due to the instability of their periodic orbits. As will be
shown, these orbits show a chaotic behavior by any slight
charlge of initial conditions, and lead to an escape of one
electron„ implying "autoionization. "

Since then, semiclassical quantization schemes have
been developed for torus motion according to Einstein
[5,6], and for chaotic orbits by Gutzwiller [7]. In a clas-
sical helium atom, a11 chaotic orbits lead to autoioniza-
tion as v ill be shown. Thus we focus on the search for
stable torus motion, since it is the only possible classical
correspondence in the helium atom. Indeed we will re-
port discovery of novel types of tori with strong correla-
tion between electrons.

Classically the dynamics of helium atom (with one nu-
cleus and two electrons) is described by the following di-
mension less form:
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Here, the first particle (particle 0) is a nucleus, with +2e
charge. M is the mass ratio of nucleus to electron
(8000.0). Two electrons (particles 1,2) have —I charge.
Equation (1) is invariant under the transformation
t Tt, r Lr for T /L = l. (Here, T and L are.units
of time and length, respectively. ) Thus the same trajecto-

ry (except the scale change) exists for any (negative) en-

ergy, by the above scale transformation. Torus orbits to
be discussed exist at any energy in classical mechanics
through the above transformation.

We restrict our problem to a two-dimensional case
only. By choosing a frame with a center of mass, our sys-
tem has 4 degrees of freedom. Because of the conserva-
tion of energy and angular momentum, the degrees of
freedom is reduced to 3, with a six-dimensional phase
space. We have carried out numerical integration of Eq.
(1) with fourth order Runge-Kutta method and au-
toadaptation for the time grid. Since the dimension of
the phase space here is rather high, it is almost impossible
to examine all possible trajectories. In the present Letter
we study the following types of initial configurations in

detail [8]: (1) Circular form (same direction) —Initial
distance to nucleus and velocity of electron 2 are fixed at
r =( —1.0,0.0), v2=(0.0, —1.0). Those of electron I are
set at r~ = (r ~, 0.0), v

~

= (0.0, v
~
)0). (2) Circular form

(inverse direction) —Both electrons are put on the same
side of the nucleus. Electron 2 is fixed at r2=(1.0, 0.0),
vq=(0. 0, 1.0), while the other one is set at r~ =(r~, 0.0),
v~ =(0.0, v~ &0) [9]. (3) Semicircular form —Electron 2
is fixed to rq=(2. 0,0.5), vz=(0.0, 0.0). Electron 1 is

r~ =(x~,y~), v~ =(0.0,0.0). Note that the total angular
momentum is zero.

For a wide range of initial conditions, we have seen the
autoionization, that is the escape of one of the electrons
to infinity. Indeed, all orbits with irregular motion
(chaotic transients) lead to autoionization, as far as we
have checked. We believe that this is true for all chaotic
trajectories, since all chaotic orbits are believed to be con-
nected in a high-dimensional Hamiltonian system by the
Arnold diAusion.

The only remaining possible trajectories keeping the
stability are tori. Through numerical integration, we
have discovered three types of tori. We have confined the
quasiperiodicity of these orbits by the Lyapunov exponent
asymptotically going to zero, as well as through the time
series and Poincare plots of orbits. The torus motion here
is confined within a finite region of phase space, not ion-
ized spontaneously. By a small change of initial config-
urations, the torus motion stall remains. The torus motion
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has a finite measure in the phase space. The tori so far
discovered are classified into the following types.

Type A: double ring —KAM torus type. —If two elec-
trons are distant, with the orbits close to two ellipses, the
dynamics is approximated by two Kepler motions for the
+2e nucleus (for the inner electron) and for the +e
charge (for the outer one). The ratio between the two ra-
dii (small to large one) plays the role of perturbation
parameter in the Kolmogorov-Arnold-Moser (KAM)
theory. As the perturbation grows, shapes of remaining
tori are distorted. In the type-1 configuration, tori exist,
for example, r] ~ 1.45 for v~ = 0.95. Closures of orbit of
each electron are concentric circles. Here we note that
some tori remain even with a strong interaction between
electrons. The existence of tori makes it possible for us to
take fully into account the interaction between electrons,
without referring to a one-body wave function as in the
usual variational trial one.

Tori of this type also exist even when the angular mo-
menta of the two electrons are opposite, as are obtained
with the use of the type-2 configuration, for example,
around (rttv ~) =(3.0,0.40). When the ratio between two
radii is far from unity, the orbit is again approximated by
two ellipses modulated quasiperiodically. As the two
electrons get closer, the torus orbit is deformed more
strongly, as shown in Fig. 1. When the outer electron
starts looping, the inner one changes its direction to con-
serve the total angular momentum, and vice versa.

Type B: Braiding. —When the distances of two elec-
trons from a nucleus are close, a novel type of stable orbit
is found starting from some examples of type-1 con-
figuration (see Figs. 2 and 3). This type of torus exists
around 1.39 ~ r i

~ 1.45, and v] = 0.86. Here the closure
of orbits are identical for each electron. Only the phases
of two orbits are diAerent. Two existence probabilities

for each electron (obtained by a long time sampling)
agree. In the term of quantum mechanics, two electrons
lie on the same level. This type of torus has again a finite
measure in the phase space, and can be semiclassically
quantized by suitably choosing their positions. Here two
electrons must satisfy a delicate phase relationship (see
Fig. 3); otherwise one of the electrons is kicked away to
infinity. In each orbit an electron revolves twice in the
inner side, while the other revolves once at the outer cir-
cle, before they exchange their position.

Existence of this type of torus is not expected from a
perturbative picture based on a two-body problem. The
stability of the torus is sustained by the strong interaction
between electrons.

Type C. Semicircular. —Here we search for a torus in

a strongly coupled regime (the ratio of radii is close to
one), by choosing the initial velocity to zero, so that the
angular momentum vanishes (configuration 3). We have
again found torus motion close to the form of Langmuir's
periodic orbit [10], e.g. , x~ =1.95, y~ =0.50. The main
diAerence here is the lack of symmetry. In Langmuir's
periodic orbit the symmetry condition r i =r2„,r iy

r 2y is imposed, while in our case two electrons are
asymmetric against the nucleus. Indeed, the periodic or-
bit of Langmuir is unstable by a slight (asymmetric) per-
turbation, while our torus exists at a finite distance from
the periodic orbit. The torus motion here consists of the
oscillatory mode similar to Langmuir s model and libra-
tions around it. In this case, the ratio of frequency of os-
cillations of two electrons is roughly 1:1. By changing the
initial velocity, we have also observed a torus with a
diAerent phase relationship. An example with 6:1 locking
is shown in Fig. 4 [11].

For configuration 1, we have checked initial conditions
in the rectangular region; r1 6 [1.0, 2.0], v1E [0.1, 1.6].
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F1G. 1. Double ring torus (inverse direction). Orbits of two
electrons are shown for 0 ~ t ~ 601, using type-2 configuration
with (r~, v~) =(3.00,0.40).

FIG. 2. Braiding torus. Orbits of two electrons are shown
for 0 ~ r ~ 68.4, using type-1 configuration with (r ~, v ~ )
= (1.40,0.86).
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FIG. 3. Orbits of brading torus with color changes every 1.6
time units, from blue to yellow, start from the same initial con-
dition as Fig. 2.

We have adopted the resolution 0.001 for t. ], while r~ is

scanned with the resolution 0. 1 for most cases, and with a
finer resolution 0.01 near the region where tori are found.
If we choose a higher initial value for v] than 1.6, one
electron is easily ionized, since the electron 1 has a very
high energy in the initial state.

For configuration 2, we have checked the initial condi-
tions within ri E [1.5, 3.0], vi e [0.4, 1.0]. Here the reso-
lution for the increment of vi is again 0.001, while r] is
scanned with the resolution 0.5. Within these initial con-
ditions, tori have been found only for ri =2.50 (semicir-
cular case and double ring) and for ri =3.00 (double
ring). For larger ri, trivial double ring tori always exist,
since the distance of two electrons is far, and a KAM
torus is stable. No nontrivial tori are found in configur-
ations 1 and 2, besides those reported here.

For configuration 3, the search is not systematic. We
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FIG. 5. Ionization time plotted as a function of initial veloci-
ty i ], using the type-1 configuration with r] =1.45. As is shown
in the figure, two types of tori exist in separate regions. CutoA
time is chosen to be 3000.
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FIG. 4. Semicircular torus with 6:1 locking. Orbits of two
electrons are shown for 0~ t ~ 337.6, using the type-2 initial
configuration with (ri, vi) =(2.50,0.40).

FIG, 6. Initial condition dependence of final state for the
type-1 configuration. Color shows the final state: torus (red),
ionization of electron 1 (green), ionization of electron 2 (blue),
and an orbit close to parabolic one (yellow). The red region
around (ri, vi) =(1.50,0.98) corresponds to the type A tori,
while the type B tori exist in regions too small to be recognized
in the figure, around (r i, v i ) = (1.40,0.86).
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have calculated only the neighborhood of the semicircular
tori reported in the Letter. For this configuration, the
torus we have found is disconnected with the Langmuir's
periodic orbit. We have also roughly examined other
configurations. They include the case with r2 & 0 at
configuration 2, and that with nonparallel speeds for two
electrons (with the change of the angle between rt and
rq). So far we have found no tori (except a trivial
double-ring type), although it is hard to disprove the ex-
istence of other types of tori.

As mentioned, all chaotic orbits are ionized as far as
we have checked. After some chaotic transients, one of
the electrons goes away to infinity. Here, we have com-
puted ionization time as a function of radius for the
type-1 configuration, by fixing the ratio of distance r ~/rz,

and varying the ratio of initial velocity v~/v2. To check
the ionization, we have measured each particle's energy
(sum of kinetic energy and potential energy). If the ener-

gy of one of the electrons is positive over a given time
duration T,tk (10 time units), the electron is regarded to
be ionized. In Fig. 5 the time necessary for ionization is

plotted as a function of the velocity v &. We have checked
this ionization condition for 3000 time units. Thus the
peaks (or plateaus) at 3000 mean that the electrons are
not ionized before the cutoA' time. The torus orbits in the
previous examples lie in the plateau region, of course.
The other peaks in the figure correspond to an orbit close
to parabolic ones, where the energy of the escaping elec-
tron is zero, implying the divergence of the ionization
time.

The structure in the figure is formed by these parabolic
orbits. Within each zone, there are smaller zones succes-
sively. (In Fig. 5, some of the edge peaks are missing,
which is just due to the precision of the scan of the veloci-
ty in the figure. ) This type of self-similar structure in a
Hamiltonian system is studied by Bleher et al. [12], in an
escape problem by scattering. Indeed, we have plotted
which electron is ionized with the change of an initial ve-

locity of an electron in Fig. 6. The figure clearly shows
the fractal-like structure as in [12].

To summarize we have discovered novel types of torus
motions in the classical helium atom, while all chaotic or-
bits are autoionized. According to Einstein s semiclassi-
cal quantization, we can get an energy spectrum from
tori, when they are not isolated, which is the case in our
tori. Within the framework of semiclassical quantization,
chaotic orbits may be unnecessary, since they are ionized
eventually (this is a result from classical dynamics, but
we have to assume the classical-quantum correspondence
as long as we use the semiclassical approximation). In
this respect, the summation over unstable periodic orbits
based on Gutzwiller's formula is not relevant here [13].
Since the classical-quantum correspondence is believed to
work better in a high-dimensional dynamical system [14],
we may conjecture that the torus-based approach is
essential to the analysis of atoms other than hydrogen. In

this approach, the interaction among electrons is fully
taken into account. The importance of tori rather than
chaos will be a common feature here. Discovery of new
types of tori with strong interaction between electrons
may also provide a new tool for the analysis of strongly
correlated electron systems, where the present con-
densed-matter theory faces with some diKcu]ty [151.

It is an interesting question to search for quantal states
corresponding to our tori experimentally (in excited
states). The existence of several types of stable tori and
parabolic orbits also suggest that there are zones of re-
gions where the ionization is suppressed. The ionization
ratio, for example, will take a self-similar structure as in
our zone structure, when plotted as a function of input
energy.
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