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Wave Functions in the Presence of a Time-Dependent Field:
Exact Solutions and Their Application to Tunneling
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Solutions to the time-dependent Schrodinger equation for a particle in a spatially uniform time-
dependent field and some potentials of arbitrary form are proved to be like the time-independent eigen-
functions for an identical static potential. The field phase modulates the wave function and translates its
envelope. This work applies directly to constant, linear, and parabolic static potentials and is self-
consistent, Results for the modulation by a time-dependent field of the current through a rectangular
barrier are relevant to the traversal time for tunneling and associated device limitations.

PACS numbers: 03.65.Ge, 73.40.6k

A novel transformation of the coordinate system of the
Schrodinger equation for a charged particle in a time-
dependent field is presented which eliminates the field
and gives rise to a new exact solution. Significant fea-
tures are that it may be applied directly to major physical
problems and that it is self-consistent in the simultaneous
solution of Poisson and Schrodinger equations. It is used
here to calculate the modulation by a field of the current
tunneling through a rectangular potential barrier.

The wave functions of some systems respond to a time
varying, spatially uniform force, f(t), by a superposition
of phase modulation and classical motion. This is a
consequence of the transformation that yields a time-
independent Schrodinger equation for one set of poten-
tials which includes several of physical importance. Con-
stant, linear, and parabolic potentials have exact solutions
as do all which can be written as

In general, the problem of a uniform field applied to a
finite potential, which gives divergent wave functions,
transforms to one in which the potential has a localized
time dependence and is therefore easier to analyze; for
example, iterative methods may allow all quantum sys-
tems in time varying spatially uniform fields to be investi-
gated.

The proof that time-dependent fields may be eliminat-
ed by a coordinate transformation starts with a Schro-
dinger equation in which the potential explicitly includes
a spatially uniform field that is an arbitrary function of
time, V(x, t) —xf(t), and a solution +(x,t):
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This is transformed to the coordinate system g, t, where
(=x —q(t), the displacement q(t) =tn ' f'p(t')dt', and
p(t) =f'f(t')dt', by substituting the product p((, t)
xg(x, t) for +(x, t), with

iET + ixp(t) "' ip'(t')dt'

After division by g(x, t) and subtracting

+ p'(t) + imp(t) By(&, t)

from both sides, Eq. (1) gives

(2)

where U([x —q(t) ],t ) = V (x, t ) and the partial deriva-
tives are taken at constant t and g. Since g(x, t) is con-
tinuous and nonzero, Eqs. (1) and (2) are equivalent.

This transformation may be used in three ways: First,
when U(g, t) is independent of t or the sum of two terms,
one independent of t and the other of g, the solutions to
Eq. (2) will be, correspondingly, functions of g alone or
products of these with a phase factor exp[i&(t)]. When
found, either analytically or numerically, they lead to ex-
act solutions in the presence of a uniform time-dependent
field. Second, the time-dependent Schrodinger equation
(1) applies at each point x and time t; Eq. (2) shows that
correct local solutions may be found wherever the poten-
tial U(g, t) is either independent of t or the sum of
separate functions of g and t This is used . in the calcula-
tion in this Letter. Third, for all other potentials the vari-
ables in the function p((, t) will not be separable; howev-

er, when U(g, t) is a series of terms, each having a simple
time dependence, an iterative approach solves Eq. (2) ap-
proximately, allowing the transformation to be used on

problems in which the potential is not a function of g
alone. For a fixed potential V(x), a Taylor series may be
used to express U((, t); its time-dependent part will equal
gq(t) "[B"V(g)/B("]/n! This will .be zero where V(x) is

constant, e.g. , far from the system under investigation in

many experiments. In general, potentials with a global
time dependence are transformed to ones with a localized
time dependence.
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In many studies the time dependence of the field is har-
monic with a potential: U(g, t) —xFcos(cot); g will equal
x+ Fcos(cot)/mco and g(x, t) will be

iEt ~ txi'P(t) "' ilVp (t')dt'exp'—
26m

iEt + iFx sin(cot)exp' 6+ hm

iF'[2cot —sin(2cot )]
8hmco

The time-dependent Schrodinger equation

2
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Three simple potentials are sums of separate functions
of ( and t T. he constant potential, V(x) =Vo, can be
written as V(g) =Vo. A linear potential, Vp XV&, may
be written as Vp V~q(t) —gv|. To express a quadratic
potential, V(x) =

2 x V2, in the presence of a field as
separate functions of g and t, it is necessary to scale the
field, giving, for a harmonic force, a total potential

2 ggv2 —xGcos(cot) —(V2G /2m co )cos (cot),

where the scaled amplitude of the force, G, equals F/(l
—V2/mco ) and (~ =x+6 cos(cot)/mco . The exact
wave functions for the linear and quadratic cases are

y(&)g(x, t)exp i (V)/h) „q(t')dt'

i G 'V2 [2cot +sin(2cot ) ]
p g~ g x, t exp)

86m o)

respectively, where p(g) and p(g~) are solutions to the
time-independent form of Eq. (2). With a quadratic po-
tential the equation of motion for q(t) is identical to the
classical equation for the same potential. T. Tanuiti [I]
noted that in this case such a transform eliminates the
term due to an arbitrarily varying uniform force; his
analysis exploited the parabolic potential and would not
extend to the general result presented here.

When a set of exact solutions [+t (x, t )j exists, two im-

portant properties may be demonstrated. The orthonor-
mality of the wave functions [%'t(x, t) j over the space [gj
is proved from that of the set [pt(g)j by evaluating

feg(x, t)ett(x, t)dx to give

f yg (&)ytt (&)exp[i(Eg —
Ett )tlh]d& =&gg .

The completeness of the set j+;(x,t)j at a time t =r fol-
lows from the argument that, if a function F(x) orthogo-
nal to the elements of the set [%' (txr)j were to exist,
then there would be a function F(x)exp[ —ixp(z)/h]
outside [pt(x —q(r ))j which is complete [2].

The transformation applies to N particles of mass m in-

teracting through potentials V~~ (r; —
r~ ) = V~ (r;~. ) and

subject to the external potential

V([r;j, t) =+V, (r, , t) x;f(t), —

where jr;j represents the space coordinates of all the par-
ticles and x; is the x component of r;. Write the wave
function +([r;j,t) as the product p(jp;j, t)g([r;j, t) with

p; =r; —xq(t) and g([r;j, t) given by

where the double summation is over all pairs counted
once, simplifies after division by g([r;j, t) to

6
V; +U, (p;, t)+g V~)(p~) P =EP+i h,

2m Bt

where the Laplacian is with respect to p; and the summa-
tions remain over all particles and pairs. The transforma-
tion eliminates the field without aAecting the interparticle
potential; the response of identical particles to a field is

therefore independent of those interactions. For example,
if electrons are confined within a parabolic potential such

as may be produced by compositional grading of an alloy
semiconductor [3], their dispersion properties will not be
aAected by the Aattening of the potential by electron-
electron repulsion but will be identical to that of N in-

dependent electrons each with a resonant frequency (V2/
4tc m) 't . This argument also applies to certain molecu-
lar vibrational modes.

To investigate the traversal time for particle tunneling
Biittiker and Landauer [4] calculated the modulation of
the tunneling current produced by a spatially uniform

time variation of a thick rectangular barrier. This will be
repeated here for the physically realizable case of modu-

lation by a uniform field using the transformation and

time-dependent wave functions. The two sets of results
show significant difI'erences relevant to the concept of a
traversal time. The calculation, using the notation of the
earlier study, starts with noninteracting charge carriers
and barrier of width d, and height Vo between two con-
ducting regions whose relative potential varies at a fre-

quency co/2tr, subjecting the barrier to a time-varying
uniform field. The potential is zero for x ~ —

2 d; Vo
—(x+ —,

' d)Fcos(cot) for x between ——,
' d and —,

' d; and
—Fdcos(cot) for x) —,

' d. This is an unbounded prob-

lem with a continuous set of wave functions for all posi-
tive values of energy E. In the first region the general
form of the wave function for a particle of energy E will

be +=Aexp[+. ikx —iEt/h] where h k =2mE, while

in the third it will be the product of this with

exp[i(Fdlhco)sin(cot)]. In the barrier a wave function is

required that is a solution of the Schrodinger equation in

the presence of the oscillating field. This work has shown

that the general form will be

+ =A exp[:t K&]g(x, t)exp
iFd sin(cot )

2h, co

where h x =2m(vo —E). Substitution confirms that
this satisfies Eq. (I) at all points in the barrier.
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When a wave of unit amplitude and energy F.; & Vo is
incident at x = —

2 d, part will be rejected and part will

penetrate into the barrier where its amplitude will decay
with distance. At x = —

2 d the amplitude of the com-
ponent in the barrier at energy F.; will be

xF [exp(icier)+exp( —ivor)] xd
exp

207 Q7 2

1+a(coshO —I )cos(rot ) —ia sinhOsin(cpr ), (3)

where a=elF/mro and O=mcud/Ax, which is propor-
tional to frequency and determines the degree of modula-
tion of the transmitted wave. Series expansion of the hy-
perbolic functions shows the behavior at low frequencies.
To first order the amplitude is D[1 —i(Fd/Aco)sin(rot)],
a phase modulation exactly canceling that implicit in this
region. The transmitted wave has a phase, relative to the
incident wave, unaAected by the modulation of the bar-
rier to this order. The second-order term, —,

' aO cos(rpt),
describes amplitude modulation in phase with the applied
field; it equals (Fmd /26 x)cos(rpr), identical to the
quasistatic result. The third-order term is a frequency-
dependent phase modulation of the transmitted wave rel-
ative to that incident of —i(Fm rod /66 x )sin(rot).
Only a dynamic theory can give such higher-order terms.
It is surprising that an approach in which the nominally
small parameter, F/mco, diverges so strongly at low fre-
quencies should give the quasistatic result in any calcula-
tion. The fact that it can implies that this transform is an
eAective way of solving all problems at frequencies at
which the particle inertia is significant.

The time dependences of this expression and that for
60/rlx are such that the continuity equations at x
= +

2 d can only be satisfied to first order always if the
waves that are reAected, within the barrier, and transmit-
ted have components with energies F.; and F,; ~ Ace. The
separate continuity equations for terms with time depen-
dence exp[ —iE;r/6], exp[ —iE;i/6 —irpt], and exp[ —i

&& E;r/6+irpt] at both ends of the barrier give each of the
transmitted amplitudes: D, which equals [ —4ikx/(x.
—ik) ]exp( —xd), identical to the solution of the static
problem, and D+ and D —given by

D ~ = [exp(x-1 —x. + d ) —I ]exp [i (k —k ~ )d/2],
DxF

2tPl 07

where terms of the order of I/Acp have been neglected in
comparison with x. /mco and as have changes in k and x.

that are small in comparison with the exponential term,
consistent with a barrier thick compared with K

' and a
modulation frequency small compared to (Vp E;)/A. lt
is also consistent to write the first bracketed term in this
expression as [exp(+' maid/Ax) —1].

Combining the transmitted wave at energy E; and the
sidebands at ~ Aco gives, at x =

2 d, a single wave of am-
plitude D multiplied by

These results may be compared with those for a spa-
tially uniform modulation of the barrier potential. The
identical simplifications give similar expressions for D+
and D —but with + Vi/26rp replacing xF/2mro, where
V] is the amplitude of modulation of Vo. Because the
polarities of the sidebands are opposite, the terms
(coshO —1) and sinhO in Eq. (3) are interchanged. The
first-order term in 6 in the expansion of the hyperbolic
functions, D[ I+( V~ md/6 ro)cos(rot)], represents an
amplitude modulation identical to the quasistatic result;
while the second-order term, —i(V~m rod /26 x )
&&sin(cot), gives phase modulation relative to the incident
wave.

Hauge and Stillvneng [5] have reviewed the status of
tunneling times, including that proposed by Buttiker and
Landauer. The consensus is that 6 K/md gives the ener-

gy scale characterizing the transmission of a rectangular
barrier. For Aco « 6 x/md, the transmission varies near-
ly linearly with energy, while its exponential nature ap-
pears when A co ~ 6 x/md. The association of a traversal
time with md/AK is disputed; Biittiker and Landauer ar-
gued that, if a barrier is modulated at an angular fre-
quency m, low compared with the inverse of the traversal
time for tunneling ~T, the quasistatic behavior is ob-
served, while if m~ T ~ 1, particles tunnel through a
time-averaged barrier with the absorption or emission of
quanta causing the degree of modulation to be frequency
dependent. For both types of barrier modulation the
transmitted sidebands vary as exp( ~ mrpd/6 x ) —1.
With a uniform potential variation, the linear term in ex-
panding exp(~maid/Ax) accounts for the quasistatic
modulation of the tunneling current; hence they argued
that the higher-order terms correspond to cu~T ~ 1, i.e.,
rT~ md/Ax. However, with field modulation it is the
second-order term in mrpd/Ax which gives the quasistatic
result; it follows that quasistatic behavior is not identified
with a particular term and therefore the onset of frequen-
cy dependence is not a general property of the barrier.
This argument cannot therefore identify md/Ax as the
transit time for tunneling, since this is a parameter which
should be independent of the type of modulation. This
rejection accords with criticisms made by Hauge and
Stgvneng and others [6].

Quasiclassically, a barrier modulated by a uniform po-
tential would not exhibit the time averaging expected by
Biittiker and Landauer since the (negative) kinetic ener-

gy of the particle in the barrier is determined by the in-
stantaneous height on entry. Changes in the barrier
height during transit alter the particle s potential energy
by external work, but not its kinetic energy or the barrier
transmission. Phase modulation would be the only eftect
of such work. In contrast, a barrier with a varying field
would exhibit time averaging of this modulating field, if it
existed, since the kinetic energy of the particle changes as
it works against the potential gradient of the field.

The lowest-order relative phase modulation of the
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transmitted wave, calculated previously, is consistent with
the external work done on a particle traveling at a veloci-
ty htc/m for both types of barrier modulation. A point
particle traveling in a variable potential V(x, t) is subject
to a time rate of change of potential: 9V(x, t)/Bt; in-

tegrating this along the trajectory yields the change in
potential energy V„(t) due to external work. The equa-
tion V, (t)tlt=ibr)ttt/Bt gives an additional phase factor
equaling exp[ —(i/h)f V„(t)dt] that depends on U, the
velocity in the barrier. For the two forms of modulation
r)V(x, t)/at will be V~cosin(cot) and Fxsin(cut) giving
phase factors 1

—(i V~ z Tco/26)sin(cot) and 1
—(iFxzTco/

66)sin(cot), respectively, to lowest order in co. These
equal the previous expressions for the phase modulation
proportional to co if the velocity is A tc/m and the traversal
time zT is md/Ate.

This equality may result from such a velocity of propa-
gation or from an accidental mathematical identity
dependent on the energy sensitivity of the barrier. The
former interpretation requires, for consistency, that there
should be a barrier averaging eftect in the amplitude
modulation given by Eq. (3). The expressions for the real
part of the amplitude proportional to cos(cot) expand
to —,

' aO (1+0 /12) and (V~8/@co)(1+0 /6) where 0
=tozT if zT =md/Ate. The average gain in kinetic ener-

gy of a particle traversing a barrier subject to the varying
potential —Fxcos(cot) reaches its maximum value of
Fd(c —c +s +cozTs)/co zT, where c =cos(cozT/3) and
s =sin(coz/3), when a particle enters at a time 2ntr/cu
—zT/3 and leaves at 2ntr/cu+2zT/3 This exp. ands to
2 Fd(l —

cu zT/36) to order cu . The amplitude modula-
tion is found by dividing this by the energy scale of the
barrier, 6 K/md. There is nothing in the comparison of
the terms of order co for the two types of barrier modu-
lation which indicates that a barrier averaging efrect of
this magnitude exists. This strongly suggests that the
tunneling process cannot be described by the picture pro-
posed by Buttiker and Landauer and that the equality of
the phase modulations found by the two methods must be
attributed to an accidental mathematical relationship.
Both expressions for the modulated amplitude of the
transmitted wave show that the degree of modulation is a
superlinear function of co. It is clear therefore that, if

there is a traversal time for tunneling, it does not neces-
sarily impose a limit to the operating frequency of elec-
tronic tunneling devices.

Major diAerences exist between the calculated tunnel-
ing behavior for a modulating field and for the simpler
potential modulation. Although both give the quasistatic
result to lowest order, the characteristics are significantly
diAerent at higher frequencies. Hence conclusions based
on analyses using the simpler modulation, popular in

studies of tunneling, are probably all incorrect in detail.
The wave functions presented here allow the frequency-
dependent modulation to be analyzed even for structures
which are complex and have parabolic variations of po-
tential in the depletion regions caused by static fields.

The transformation is a key to improved understanding
of the dynamics of many physical phenomena. It pro-
vides a direct, simple, and intuitive approach to the study
of systems in time-dependent fields without the limita-
tions of perturbation theory. Multiquanta eAects and
scattering by realistic time-dependent potentials are two
of the many areas where the basic concepts of this Letter
are likely to be used in the solution of important prob-
lems.
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