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Scaling Behavior of Two-Time Correlations in a Twisted Nematic Liquid Crystal
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(Received 1 l September 1992)

We have measured the coarsening exponent p and the nontrivial scaling exponent A, , which character-
ize how the two-time correlation function C(t, t') scales with the correlation length L(t), C(t, t')
ee L(t) ~ when t &&t', for a twisted nematic liquid-crystal system quenched from the isotropic phase to
the nematic phase. This system is expected to be Ising-like with &=0.5 and X=1.25. Our values,
&=0.515+ 0.026, measured over two decades in time, and A. =1.246+ 0.079, measured over the late
time period, 30 to 150 s, are in good agreement with theory.

PACS numbers: 64.70.Md

A system rapidly quenched from a high-temperature
phase to a low-temperature phase via a symmetry-
breaking phase transition generates topological defects.
Following the phase quench, the density of these topologi-
cal defects generally decays with time as the system an-
neals and, correspondingly, patches of the system become
correlated over increasingly larger length scales. This
coarsening process has been extensively studied for sys-
tems possessing a conserved scalar order parameter, such
as systems exhibiting spinodal decomposition [1]. Re-
cently there has been considerable activity in the study of
coarsening processes in systems possessing nonconserved
order parameters and stringlike or pointlike topological
defects, both theoretical [2-6] and experimental [7-9].
The growth of the correlation length L(t) as a function of
the time t since the quench often asymptotically ap-
proaches a power law L(t) ~ t~. The coarsening exponent

p is typically, although not always [10], —,
' for a system

with a nonconserved order parameter. The exponent tt is

known to be 2 for the two-dimensional Ising model, as
determined from theoretical arguments [11-13],numeri-
cal simulations [14], and experiment [11]. A second ex-
ponent of importance in characterizing the annealing is

the exponent characterizing the asymptotic behavior of
the two-time correlation function C(t, t') =(N(r, t)4(r,
r ') ) where N(r, t ) is the order parameter. When r )) t

'

this correlation function scales with the correlation length
as C(t, t') —L(t) . This nontrivial dynamical scaling
exponent was first studied by Fisher and Huse [15] in

connection with spin glasses since it characterizes the de-

cay of magnetization for such systems. It was argued by
these authors, and supported with numerical work, that

for the two-dimensional Ising system. Recently
there has been considerable theoretical activity directed
toward calculating X for systems other than the Ising sys-
tem [16,17]. Most of this work has been restricted to the
study of O(n) models within the context of I/n expan-
sions. Work has also continued on the study of domain
growth in random magnets [18] and Ising systems
[19,20]. Bray and Humayun [21] argue that the two-
time correlation function C(t, t') should scale asymptoti-
cally as L(t) even when the correlation length L(t)
does not follow a power-law growth, for example, due to

the presence of pinning sites that slow down the growth of
the correlation length. This scaling law is thus expected
to be more generally valid than that for the growth of the
correlation length. To our knowledge there have been no
experimental measurements of X reported in the litera-
ture. Here experimental data are presented which sup-
port a value of 1.25 for X for two-dimensional Ising-like
systems. Our data also support the expected value of 0.5
for p.

Our system consists of a 20-pm-thick film of uniaxial
nematic liquid crystal placed between two glass plates
which have been treated to force the direction of molecu-
lar alignment (director field [22]) at the surface of a
glass plate to lie parallel to the glass plate along a well-

defined direction. The two glass plates are oriented such
that the orientation of the director at one glass surface is

orthogonal to the orientation of the director at the other
glass surface. The director field must thus twist by x/2,
either clockwise or counterclockwise, as one goes from
one glass surface to the other. The clockwise or counter-
clockwise gc/2 twist provides the two values of the order
parameter that correspond to a spin pointing up or down
in an Ising magnet. These two regions of the liquid crys-
tal can be diff'erentiated by their respective colors when
viewed under crossed polarizers due to the circular di-
chroic nature of the liquid crystal [23]. The boundary or
"domain wall" between adjacent patches of clockwise
twisting and counterclockwise twisting liquid crystal con-
sists of a type- 2 disclination line [24]. The time evolu-

tion of the system, following a quench from the isotropic
phase to the nematic phase, was recorded using video mi-

croscopy. The images were digitally processed to extract
the two-time correlation function. The structure factor
and the growth of the correlation length with time for
this system has already been studied [24,25] using video
microscopy techniques. Our work, however, presents the
first experimental determination of the scaling exponent X

for any physical system.
The liquid crystal used was trans-(trans)-4-methoxy-

4'-n-pentyl-l, I '-bicyclohexyl (Merck, CCH-501 or ZLI-
3005). This material has an anisotropy in the index of
refraction, hn =0.027, that is low compared with values
h, n =0.05 to 0.25, typically exhibited by thermotropic
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liquid crystals. For sample cells of 20-pm thickness such
a low anisotropy in the index is desirable to enhance the
contrast between the domains of clockwise and counter-
clockwise twist when viewed through crossed polarizers
[23]. The surfaces of the glass slides are treated by first
degreasing and cleaning them. Then they are dipped in a
0.1% by weight solution of polyvinyl alcohol in distilled
water. After drying, the slides are lightly buAed uni-
directionally with a soft cloth to establish the direction of
alignment of the liquid-crystal molecules at the glass
boundary. Mylar spacers are used to define the thickness
of the region of the sample cell where the liquid crystal is
placed and the two (crossed) slides are epoxied together.
The sample cell was placed in an oven composed of two
aluminum plates with windows, resistive heaters, and a
thin film thermocouple. The isotropic-to-nematic phase
transition occurs at 37 'C and a nematic-to-smectic-3
transition occurs at 29 C. In a typical data run, the
sample was heated to 41 C and then quenched by direct-
ing air onto the oven, lowering the cell temperature
through the transition temperature at a rate of 0.3'C/s,
and reaching a final temperature of 32 C after about
50 s.

The time evolution of the clockwise twisting and coun-
terclockwise twisting domains were recorded on video-
tape. The images were processed to enhance the contrast
between the two types of domains. The procedure con-
sisted of first plotting the distribution of pixel values, for
a given video frame, in red-green-blue color space. The
pixel density in the red-green-blue color space generally
had two well-separated peaks. The images were then
converted to black-and-white images by assigning the
value "black" ( —1) to those pixels associated with one
peak in the pixel density and the value "white" (+1) to
the pixels associated with the other peak in the pixel den-
sity. Figure 1 shows a typical sequence of images, depict-
ing coarsening, processed via the procedure described
above. Each frame is labeled with the time since the
phase transition. These images are of a sample region
that is 1.56 mm on a side. The resolution is limited by
the frame-grabbing software, which generates images
that are (400 pixels), each pixel representing a sample
region 4 pm across. As can be seen, after having been
quenched from the isotropic phase to the nematic phase,
the liquid crystal consists of interpercolated domains
which coarsen with time. As shown by Nagaya, Orihara,
and Ishibashi [251, it is important that the two surfaces of
the cell be aligned such that the director at the surface of
one glass plate is orthogonal to the director at the surface
of the other glass plate. The angle between the direction
of alignment of the two glass surfaces in our samples was
within 5 of 90 .

For a two-dimensional system with a nonconserved sca-
lar order parameter one expects the characteristic length
L(t) to grow diff'usively with time, L(t) cct . In order
to determine the behavior of L(t) with time for our sys-
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FIG. 1. A sequence showing the coarsening of domains of
two types of twist in a twisted nematic liquid crystal as a func-
tion of time, in seconds, following an isotropic-to-nematic phase
transition.
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FIG. 2. A log-log plot of disclination line density, pl, vs time.

A least-squares fit gives a slope of 0.49, very close to the expect-
ed scaling of 0.5 for an Ising system, shown by the solid line.
The error bars indicate the statistical uncertainty (standard de-
viation divided by the square root of the number of runs) deter-
mined from five runs.

tern, data from five separate runs were analyzed and
averaged to obtain the defect density (disclination line
length per unit area) pt(t) as a function of time. This
quantity should be inversely proportional to the correla-
tion length, pt(t) tx: 1/L(t). The defect density was deter-
mined by measuring the total length of the disclination
lines with a planometer and dividing this length by the
area, 1.56 mm . Figure 2 is a log-log plot of the defect
density, pt ~ I/L (t), versus time. A least-squares fit
through the data, obtained by minimizing the vertical re-
siduals only since the error in the time after the quench is
less than 0.2 s, gives a slope of —0.490+ 0.006 for over
two decades in time. Our value of the scaling exponent is
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larger than the value of 0.44 previously reported by
Orihara and Ishibashi [24]. They suggest that the low
value for p is due to the fact that the sample cell contin-
ues to cool throughout the duration of a run. Dimension-
al analysis of the equation of motion [22,26] for the
liquid-crystal director field shows that K/gee L /t, where
K and y are the elastic and damping constants, respec-
tively. A temperature dependent K/y will thus affect the
measured slope of L(t) versus time. To determine the
temperature dependence of K/y we measured the col-
lapse rate of circular disclination loops at different
temperatures. From these data we conclude AVK/y/
dK/AT= —0.01+ 0.01 K '. In other words, dK/y
varies by ( —5~5)% over the 5'C temperature change
that occurs during the course of a given data run. Cor-
recting our measured value for p gives &=0.515 ~0.026.
This is close to the slope of 0.5, shown by the solid line,
the behavior expected for a two-dimensional Ising system.

The two-time correlation C(t, t') between the system at
time t and at time t' was determined using the algorithm

where the sum is over N =400 pixels and the parameters
&;(t) take on the values +1 and —1, depending on
whether the pixel corresponds to a region of the sample
with a clockwise or counterclockwise twist. In some of
the runs, the temperature dependence of the circular di-
chroic effect made it impossible to analyze images occur-
ring earlier than 2 s after the quench. During this early
time, there is a thermal gradient across the field of view
of 0.13'C/mm as well as a rapid thermal change of
0.3 C/s. The two-time correlation function with the ini-
tial time t' chosen to be 2 s will be denoted as C(t, 2).
Figure 3 is a log-log plot of C(t, 2) versus time using data
from the same five runs as before. A least-squares fit,
again for vertical residuals, through the data of 30

through 150 s, gives an asymptotic slope of —0.582
~0.044. The solid line has a slope of —0.625, deter-
mined from the theory developed by Fisher and Huse
[15] for the Ising model.

These data enable us to calculate the scaling exponent
k in two different ways. If the scaling for the growth of
the correlation length as a function of time is L ~ t~ and
the scaling of the two-time correlation as a function of
time is C(t, 2) ~t, then the scaling exponent 7. is given
by X =v/p. To be consistent, we obtained a value of
p =0.475+ 0.028 for a least-squares fit over the late time
range, 30 to 150 s. Over this time interval, thermal
corrections to p are negligible. We did not take measure-
ments at later times because the correlation length be-
came comparable to the size of.the largest blemish-free
region. These blemishes provided pinning sites for the
disclination lines which retarded the coarsening at late
times. The measured values p =0.475 and v =0.582 thus
yield X=1.225 ~0.097, which is consistent with theory.
The exponent k can also be extracted by directly plotting
the logarithm of C(t, 2) against the logarithm of p(t) as
shown in Fig. 4. A least-squares fit to the data gives
X =1.246 ~ 0.079. This result was obtained by calculat-
ing the slope and standard deviation of the slope for each
individual run and then combining the results. The nu-
merical data of Fisher and Huse [15] for C(t, 0) for the
Ising model quenched from random initial conditions
have been rescaled and drawn as the dashed curve in this
figure in order to give a qualitative indication of how the
approach to asymptotic behavior proceeds.

To summarize, we have measured the nontrivial dy-
namical scaling exponent A, for an Ising-like system. We
observe the growth of the correlation length to closely fol-
low that of an ideal Ising system and the value of 1.25
predicted by Fisher and Huse [15] is in good agreement
with our measured value of A, .

We wish to acknowledge fruitful discussions with Da-
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FIG. 3. A log-log plot of the two-time correlation function

with time. The solid line has a slope of —0.625, the value ob-
tained by Fisher and Huse [151. The error bars indicate the
statistical uncertainty determined from five data runs.
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FIG. 4. A log-log plot of the two-time correlation function vs

defect density, shown by the solid symbols. The solid line is the
theoretically predicted asymptotic slope of 1.25 and the dashed
curve is the (rescaled) numerical solution of Fisher and Huse
[15] for C(t, O).
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