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An unknown quantum state |¢) can be disassembled into, then later reconstructed from, purely
classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations. To do
so the sender, “Alice,” and the receiver, “Bob,” must prearrange the sharing of an EPR-correlated
pair of particles. Alice makes a joint measurement on her EPR particle and the unknown quantum
system, and sends Bob the classical result of this measurement. Knowing this, Bob can convert the
state of his EPR particle into an exact replica of the unknown state |¢) which Alice destroyed.

PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

The existence of long range correlations between
Einstein-Podolsky-Rosen (EPR) [1] pairs of particles
raises the question of their use for information transfer.
Einstein himself used the word “telepathically” in this
context [2]. It is known that instantaneous information
transfer is definitely impossible [3]. Here, we show that
EPR correlations can nevertheless assist in the “telepor-
tation” of an intact quantum state from one place to
another, by a sender who knows neither the state to be
teleported nor the location of the intended receiver.

Suppose one observer, whom we shall call “Alice,” has
been given a quantum system such as a photon or spin-%
particle, prepared in a state |¢) unknown to her, and she
wishes to communicate to another observer, “Bob,” suf-
ficient information about the quantum system for him to
make an accurate copy of it. Knowing the state vector
|¢) itself would be sufficient information, but in general
there is no way to learn it. Only if Alice knows before-
hand that |¢) belongs to a given orthonormal set can she
make a measurement whose result will allow her to make
an accurate copy of |¢). Conversely, if the possibilities
for |¢) include two or more nonorthogonal states, then no
measurement will yield sufficient information to prepare
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a perfectly accurate copy.

A trivial way for Alice to provide Bob with all the in-
formation in |¢) would be to send the particle itself. If she
wants to avoid transferring the original particle, she can
make it interact unitarily with another system, or “an-
cilla,” initially in a known state |ag), in such a way that
after the interaction the original particle is left in a stan-
dard state |¢o) and the ancilla is in an unknown state
|a) containing complete information about |¢). If Al-
ice now sends Bob the ancilla (perhaps technically easier
than sending the original particle), Bob can reverse her
actions to prepare a replica of her original state |¢). This
“spin-exchange measurement” [4] illustrates an essential
feature of quantum information: it can be swapped from
one system to another, but it cannot be duplicated or
“cloned” [5]. In this regard it is quite unlike classical
information, which can be duplicated at will. The most
tangible manifestation of the nonclassicality of quantum
information is the violation of Bell’s inequalities [6] ob-
served [7] in experiments on EPR states. Other manifes-
tations include the possibility of quantum cryptography
[8], quantum parallel computation [9], and the superior-
ity of interactive measurements for extracting informa-
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tion from a pair of identically prepared particles [10].

The spin-exchange method of sending full information
to Bob still lumps classical and nonclassical information
together in a single transmission. Below, we show how
Alice can divide the full information encoded in |¢) into
two parts, one purely classical and the other purely non-
classical, and send them to Bob through two different
channels. Having received these two transmissions, Bob
can construct an accurate replica of |¢). Of course Alice’s
original |¢) is destroyed in the process, as it must be to
obey the no-cloning theorem. We call the process we are
about to describe teleportation, a term from science fic-
tion meaning to make a person or object disappear while
an exact replica appears somewhere else. It must be em-
phasized that our teleportation, unlike some science fic-
tion versions, defies no physical laws. In particular, it
cannot take place instantaneously or over a spacelike in-
terval, because it requires, among other things, sending
a classical message from Alice to Bob. The net result
of teleportation is completely prosaic: the removal of |¢)
from Alice’s hands and its appearance in Bob’s hands a
suitable time later. The only remarkable feature is that,
in the interim, the information in |¢) has been cleanly
separated into classical and nonclassical parts. First we
shall show how to teleport the quantum state [¢) of a
spin—% particle. Later we discuss teleportation of more
complicated states.

The nonclassical part is transmitted first. To do so,
two spin-— particles are prepared in an EPR singlet state

- \/g(iTzﬂls) = [12)|13))- (1)

The subscripts 2 and 3 label the particles in this EPR
pair. Alice’s original particle, whose unknown state |¢)
she seeks to teleport to Bob, will be designated by a
subscript 1 when necessary. These three particles may be
of different kinds, e.g., one or more may be photons, the
polarization degree of freedom having the same algebra
as a spin.

One EPR particle (particle 2) is given to Alice, while

[W123) = %H‘I’g;

It follows that, regardless of the unknown state |¢;), the |

four measurement outcomes are equally likely, each oc-
curring with probability 1/4. Furthermore, after Alice’s
measurement, Bob’s particle 3 will have been projected
into one of the four pure states superposed in Eq. (5),
according to the measurement outcome. These are, re-
spectively,

—o=-(5). (T50) e
(35) e (375) 160

1896

)Y (—alTs) — bl 13)) + [T$D) (—alta) + bl 1)) + [8$5

the other (particle 3) is given to Bob. Although this
establishes the possibility of nonclassical correlations be-
tween Alice and Bob, the EPR pair at this stage contains
no information about |¢). Indeed the entire system, com-
prising Alice’s unknown particle 1 and the EPR pair,
is in a pure product state, |¢1) |‘Il(2—3')), involving neither
classical correlation nor quantum entanglement between
the unknown particle and the EPR pair. Therefore no
measurement on either member of the EPR pair, or both
together, can yield any information about |¢). An entan-
glement between these two subsystems is brought about
in the next step.

To couple the first particle with the EPR pair, Alice
performs a complete measurement of the von Neumann
type on the joint system consisting of particle 1 and parti-
cle 2 (her EPR particle). This measurement is performed

in the Bell operator basis [11] consisting of I\Il(lg)) and

1) = /5 (T0)ld2) + 112)]12)),
(2)

1) = /3 (110)112) £ 1) 12))-

Note that these four states are a complete orthonormal
basis for particles 1 and 2.

It is convenient to write the unknown state of the first
particle as

|#1) = al|T1) +0]l1), (3)

with |a|? + 5|2 = 1. The complete state of the three
particles before Alice’s measurement is thus

U 13) = 72— (T0)I12)La) = [T1)] 12)] 1))

+\/% (T2 Ls) = 1l Ta)). (4)

In this equation, each direct product | 1)| 2) can be ex-
pressed m terms of the Bell operator basis vectors ](ID(i))

and |\If ), and we obtain

) (alLs) +bl13)) + 1) (al L) — b] 13))].
(5)

Each of these possible resultant states for Bob’s EPR
particle is related in a simple way to the original state
|¢) which Alice sought to teleport. In the case of the first
(singlet) outcome, Bob’s state is the same except for an
irrelevant phase factor, so Bob need do nothing further to
produce a replica of Alice’s spin. In the three other cases,
Bob must apply one of the unitary operators in Eq. (6),
corresponding, respectively, to 180° rotations around the
z, =, and y axes, in order to convert his EPR particle into
a replica of Alice’s original state |¢). (If |¢) represents a
photon polarization state, a suitable combination of half-
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wave plates will perform these unitary operations.) Thus
an accurate teleportation can be achieved in all cases by
having Alice tell Bob the classical outcome of her mea-
surement, after which Bob applies the required rotation
to transform the state of his particle into a replica of |@).
Alice, on the other hand, is left with particles 1 and 2 in
one of the states |\Il%)) or IQ%)), without any trace of
the original state |¢).

Unlike the quantum correlation of Bob’s EPR particle
3 to Alice’s particle 2, the result of Alice’s measurement
is purely classical information, which can be transmit-
ted, copied, and stored at will in any suitable physical
medium. In particular, this information need not be de-
stroyed or canceled to bring the teleportation process to
a successful conclusion: The teleportation of |¢) from
Alice to Bob has the side effect of producing two bits of
random classical information, uncorrelated to |¢), which
are left behind at the end of the process.

Since teleportation is a linear operation applied to the
quantum state |¢), it will work not only with pure states,
but also with mixed or entangled states. For example,
let Alice’s original particle 1 be itself part of an EPR
singlet with another particle, labeled 0, which may be far
away from both Alice and Bob. Then, after teleportation,
particles 0 and 3 would be left in a singlet state, even
though they had originally belonged to separate EPR
pairs.

All of what we have said above can be generalized
to systems having N > 2 orthogonal states. In place
of an EPR spin pair in the singlet state, Alice would
use a pair of N-state particles in a completely entangled
state. For definiteness let us write this entangled state as
2519 ®|7)/V/N, where j =0,1,...,N —1 labels the N
elements of an orthonormal basis for each of the N-state
systems. As before, Alice performs a joint measurement
on particles 1 and 2. One such measurement that has
the desired effect is the one whose eigenstates are |nm),
defined by

W}nm) = 26277””/1\, I]> ® |(] + m) mOdN}/\/N

J
()

Once Bob learns from Alice that she has obtained the re-
sult nm, he performs on his previously entangled particle
(particle 3) the unitary transformation

Unm = »_ e>™*7/N k) ((k +m) mod N|. (8)
k

This transformation brings Bob’s particle to the origi-
nal state of Alice’s particle 1, and the teleportation is
complete.

The classical message plays an essential role in telepor-
tation. To see why, suppose that Bob is impatient, and
tries to complete the teleportation by guessing Alice’s
classical message before it arrives. Then Alice’s expected

|¢) will be reconstructed (in the spin- case) as a ran-

dom mixture of the four states of Eq. (6). For any |¢),
this is a maximally mixed state, giving no information
about the input state |¢). It could not be otherwise, be-
cause any correlation between the input and the guessed
output could be used to send a superluminal signal.

One may still inquire whether accurate teleportation
of a two-state particle requires a full two bits of classical
information. Could it be done, for example, using only
two or three distinct classical messages instead of four,
or four messages of unequal probability? Later we show
that a full two bits of classical channel capacity are neces-
sary. Accurate teleportation using a classical channel of
any lesser capacity would allow Bob to send superlumi-
nal messages through the teleported particle, by guessing
the classical message before it arrived (cf. Fig. 2).

Conversely one may inquire whether other states be-
sides an EPR singlet can be used as the nonclassical chan-
nel of the teleportation process. Clearly any direct prod-
uct state of particles 2 and 3 is useless, because for such
states manipulation of particle 2 has no effect on what
can be predicted about particle 3. Consider now a non-
factorable state |Y23) . It can readily be seen that after
Alice’s measurement, Bob’s particle 3 will be related to
|¢1) by four fixed unitary operations if and only if | T23)
has the form

v/ 3 (luz) [p) + [v2) lgs)), )

where {|u),|v)} and {|p),|q)} are any two pairs of or-
thonormal states. These are maximally entangled states
[11], having maximally random marginal statistics for
measurements on either particle separately. States which
are less entangled reduce the fidelity of teleportation,
and/or the range of states |¢) that can be accurately tele-
ported. The states in Eq. (9) are also precisely those ob-
tainable from the EPR singlet by a local one-particle uni-
tary operation [12]. Their use for the nonclassical channel
is entirely equivalent to that of the singlet (1). Maximal
entanglement is necessary and sufficient for faithful tele-

Two bits

Two bits [0}

/

|6) EPlilpair

FIG. 1. Spacetime diagrams for (a) quantum teleporta-
tion, and (b) 4-way coding [12]. As usual, time increases
from bottom to top. The solid lines represent a classical pair
of bits, the dashed lines an EPR pair of particles (which may
be of different types), and the wavy line a quantum parti-
cle in an unknown state |¢). Alice (A) performs a quantum
measurement, and Bob (B) a unitary operation.

Two bits EPR pair
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FIG. 2. Spacetime diagram of a more complex 4-way cod-
ing scheme in which the modulated EPR particle (wavy line)
is teleported rather than being transmitted directly. This dia-
gram can be used to prove that a classical channel of two bits
of capacity is necessary for teleportation. To do so, assume
on the contrary that the teleportation from A’ to B’ uses an
internal classical channel of capacity C < 2 bits, but is still
able to transmit the wavy particle’s state accurately from A’
to B’, and therefore still transmit the external two-bit mes-
sage accurately from B to A. The assumed lower capacity
C < 2 of the internal channel means that if B’ were to guess
the internal classical message superluminally instead of wait-
ing for it to arrive, his probability 27C of guessing correctly
would exceed 1/4, resulting in a probability greater than 1/4
for successful superluminal transmission of the external two-
bit message from B to A. This in turn entails the existence
of two distinct external two-bit messages, r and s, such that
P(r|s), the probability of superluminally receiving r if s was
sent, is less than 1/4, while P(r|r), the probability of super-
luminally receiving r if r was sent, is greater than 1/4. By
redundant coding, even this statistical difference between r
and s could be used to send reliable superluminal messages;
therefore reliable teleportation of a two-state particle cannot
be achieved with a classical channel of less than two bits of
capacity. By the same argument, reliable teleportation of an
N-state particle requires a classical channel of 2log, (V) bits
capacity.

portation.

Although it is currently unfeasible to store separated
EPR particles for more than a brief time, if it becomes
feasible to do so, quantum teleportation could be quite
useful. Alice and Bob would only need a stockpile of
EPR pairs (whose reliability can be tested by violations
of Bell’s inequality [7]) and a channel capable of carry-
ing robust classical messages. Alice could then teleport
quantum states to Bob over arbitrarily great distances,
without worrying about the effects of attenuation and
noise on, say, a single photon sent through a long op-
tical fiber. As an application of teleportation, consider
the problem investigated by Peres and Wootters [10], in
which Bob already has another copy of |¢). If he acquires
Alice’s copy, he can measure both together, thereby de-
termining the state |¢) more accurately than can be done
by making a separate measurement on each one. Finally,
teleportation has the advantage of still being possible in
situations where Alice and Bob, after sharing their EPR
pairs, have wandered about independently and no longer
know each others’ locations. Alice cannot reliably send
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Bob the original quantum particle, or a spin-exchanged
version of it, if she does not know where he is; but she can
still teleport the quantum state to him, by broadcasting
the classical information to all places where he might be.

Teleportation resembles another recent scheme for us-
ing EPR correlations to help transmit useful information.
In “4-way coding” [12] modulation of one member of an
EPR pair serves to reliably encode a 2-bit message in
the joint state of the complete pair. Teleportation and
4-way coding can be seen as variations on the same un-
derlying process, illustrated by the spacetime diagrams in
Fig. 1. Note that closed loops are involved for both pro-
cesses. Trying to draw similar “Feynman diagrams” with
tree structure, rather than loops, would lead to physically
impossible processes.

On the other hand, more complicated closed-loop di-
agrams are possible, such as Fig. 2, obtained by substi-
tuting Fig. 1(a) into the wavy line of Fig. 1(b). This
represents a 4-way coding scheme in which the modu-
lated EPR particle is teleported instead of being trans-
mitted directly. Two incoming classical bits on the lower
left are reproduced reliably on the upper right, with the
assistance of two shared EPR pairs and two other clas-
sical bits, uncorrelated with the external bits, in an in-
ternal channel from A’ to B’. This diagram is of interest
because it can be used to show that a full two bits of
classical channel capacity are necessary for accurate tele-
portation of a two-state particle (cf. caption).
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