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Decay Kinetics of Ballistic Annihilation
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We study the kinetics of ballistic annihilation, A+A 0, with continuous initial particle velocity dis-
tributions. The concentration and the rms velocity are found to decay as c—t and v, ,—t ~, respec-
tively, with the relation a+P= 1 holding in any spatial dimension. A "mean-field" Boltzmann equation
for the evolution of the velocity distribution predicts that a and P depend strongly on the initial condi-
tion, a behavior which is confirmed numerically in one and two dimensions.

PACS numbers: 82.20.Pm, 02.50.—r, 03.20.+i, 05.20.Dd

For irreversible diftusion-controlled reactions, it is now

widely appreciated that the density decays more slowly
than the predictions of mean-field theory in sufticiently
low spatial dimension. For two-species annihilation, this
behavior is accompanied by the dynamic formation of
large-scale spatial heterogeneities in an initially homo-
geneous system [1]. The contrasting situation where the
reactants move ballistically has received much less atten-
tion, however, and relatively little is known.

Interesting results have been recently reported for the
kinetics of irreversible aggregation, 2;+A& 2;+~, with
ballistic trajectories for the aggregates and with momen-
tum conserving collisions [2,3]. Here the subscript refers
to the (conserved) mass of the aggregates. This model
has been invoked as an idealization of the coalescence of
quid vortices [4] and planet formation by accretion [5].
For ballistic aggregation, a scaling argument suggests
that the concentration of aggregates decays with time as
t ', with tt =2d/(d+2) and d the spatial dimension [2].
This dimension dependence is atypical of the behavior
pattern exhibited by diA'usion-controlled reactions. Fur-
thermore, microscopic considerations show that the decay
of the density of fixed-mass aggregates disagrees with the
scaling predictions [3].

Motivated in part by these intriguing features, we in-

vestigate the decay kinetics of the more elementary
single-species annihilation process, 2+2 0, for arbi-
trary continuous initial velocity distributions. By analysis
of the Boltzmann equation for the evolution of the veloci-

ty distribution, we can account for the decay of the densi-

ty and the dependence of the exponent e on the initial ve-
locity distribution and on d. Our predictions are verified
in one and two dimensions by numerical integration of
the Boltzmann equation and by Monte Carlo simulations.
It is worth noting that fog annihilation in one dimension
with a discrete bimodal initial velocity distribution [6],
P(v, t =0) ceps(v —1)+ (1 —p)8(v+1), the density de-
cays as t ' for p = —, , while the minority velocity
species decays exponentially for p~ 2 . These results can
be inferred by mapping the kinetics onto a first-passage

process for a one-dimensional random walk. For continu-
ously distributed velocities, this approach is inadequate to
account for the wide range of possible kinetic behaviors.

At t =0, the system consists of identical particles
whose velocities i are distributed according to an initial
distribution P(v, t =0) with zero mean. The decay kinet-
ics appears to be independent of the initial spatial distri-
bution of particles and for simplicity we focus on a ran-
dom initial distribution. Particles move according to
their initial velocity until a collision occurs, which results
in the removal of both colliding particles. We are in-

terested in determining the time dependence of the mac-
roscopic concentration, c(t) =f dv P(v, t), and the mo-
ments of the velocity distribution, (v") ' "=[fdv v"P(v,
t )Ic(t)]"".

A simple power counting argument relates the density
decay exponent e in the decay of the concentration,
c(t) —t ', with the exponent P which characterizes the
decay of the typical velocity, v, ,—t . Consider a sys-
tem of identical particles of fixed radius r at concentra-
tion c which move with a velocity of the order of v, ,
From an elementary mean-free-path argument, the time

between collisions is t —1/cv, ,r" ' or cv„,cct '. Thus
the relation a+P =1 should hold for all spatial dimension
d.

Since the lifetime of particles with velocity i is propor-
tional to 1/v, faster particles tend to annihilate more

quickly, and the typical velocity should decay in time. By
the relation between a and P, a value of tz less than unity
is therefore implied. We further argue that there is a
strong dependence of the exponent e on the form of the
initial velocity distribution. This behavior dift'ers from
the "transparent" limit of c —t which arises from the
naive rate equation c tx —kc .

To determine the decay kinetics, we write a Boltzmann
equation for the time evolution of the velocity distribu-
tion. For simplicity, consider the one-dimensional case;
generalization to h igher dimensions follows n atu rally.
Let P(x, v, t) be the density of particles with velocity v at
position x and at time t. At time t+At, the velocity dis-

1890 1993 The American Physical Society



VOLUME 70, NUMBER 12 PH YSICAL R EV I EW LETTERS 22 MARCH 1993

tribution changes both because of translation of particles and because of reactions. We treat the reaction term in a
mean-field approximation by assuming that a particle at x'(x and velocity t.

'& i will necessarily react with the target
particle at (x, v) when x —x'( (v' —i )At. There is a complementary contribution due to collisions between the target
and a particle located at x' & x with i '( v. These two contributions lead to the Boltzmann equation

goo f~P(x+tat t t+t5t) —P(x, v t)= —kP(x, v t) dt' I dx'P(x'v't)
~ x —((' —( )at

f ( r x+(( —(' )at
+ J dv'J dx'P(x', v', t)

where k is a dimensionless reaction constant. Since a collision leads to particle annihilation, there is no collision-induced
gain term in the equation. This approximate equation overcounts collisions, since the incident particle at x may react
with a third particle rather than with the target particle. We anticipate that such three-body interactions will have a
relatively small effect on the kinetics.

To analyze this Boltzmann equation, we expand to first order in h, t to arrive at

r)P(x v t) BP(x v t)
v

' ' —kP(x v t) dv'Iv v'IP(x v', t) .
rlt Bx (2)

Since the initial velocity distribution and the ensuing re-
action process are spatially homogeneous, we assume that
the velocity distribution remains spatially homogeneous.
Thus we set the convective term itP/itx to zero and write
P(v, t) to signify the time-dependent and spatially homo-
geneous concentration of particles with velocity v. This
gives

t)P( t) = —kP(v, t) dv'Iv —v'IP(v' t)J —oo
(3)

where the Iv —v'I dependence of the integral kernel con-
trols the reaction rate. Equation (3) is reminiscent of the
Smoluchowski equation for ballistic aggregation [3].
Despite the uncontrolled nature of the approximations
underlying Eq. (3), this formulation gives a useful quan-
titative description of the decay kinetics.

The first step in analyzing the Boltzmann equation is to
apply dimensional arguments, together with the assumed
asymptotic behaviors, c—t and v„,—t ~, to reduce
Eq. (3) to a single variable equation. From these con-
siderations, we expect that the velocity distribution will
have the following scaled form:

' P —a r i pco t v tP(v, t) = — f(z), with z =
vo to t. o to

(4)

Notice the invariance under the transformation f(z)
a f(az), so that a unit normalization of f(z) can be

achieved by a scale change in z. To find the large-z tail

Here z is the dimensionless velocity, to= I/kcovo the ini-
tial time between reactions, k the dimensionless reaction
constant, co the initial concentration, and t. o the initial
rms velocity.

Substituting this scaling form into Eq. (3), we immedi-
ately confirm the exponent relation a+P = l. Additional-
ly, we obtain an equation for the scaling function,

(2P —1)f(z)+Pzf'(z) = —f(z) J" dz'Iz —z'If(z') .

(5)

f+ OO

(2P —1)+P lim z[lnf(z)]'= —
2& dz'Iz'If(z') . (7)

Consider an initial velocity distribution with a power-law
dependence near the origin and a cutoff at vo, P(v, t
=0) ~ Iv I

"0(vo —Iv I). Our Monte Carlo simulations
(discussed below) reveal that the scaled distribution re-
tains the same power-law form in the small-z limit,
f(z) ~ IzI". Adopting this form in Eq. (7), the second
term is simply equal to Pp. The resulting equation then
predicts that P is a monotonically decreasing function of
p (for p ) —1) whose precise form depends on the first
moment of f(z) which, in turn, depends on the full de-
tails of the velocity distribution. For example, for the tri-
al function f(z) ~ IzI "e i'it~ in Eq. (7), i.e., the product
of' the asymptotic behaviors, we obtain P = 1/(3+2p ).
Thus by tuning p, the exponents a and P can take on any
value between 0 and 1, subject to the condition a+P = l.
Notice that e is less than unity, in general, showing that
the reaction does not conform to bimolecular reaction ki-
netics. Paradoxically, when the concentration decays rel-
atively quickly, a=1, the typical velocity decays slowly,
and vice versa. This exponent variation occurs for any
physically reasonable trial form for f(z), and is corro-
borated by numerical simulations.

The generalization of the scaling approach for the
Boltzman n equation to h igher spatial dimensions is
straightforward. The scaled velocity distribution function

of the scaled velocity distribution, we approximate
Iz —z'I —IzI in the integral and use the fact that f(z)
vanishes as z ~. These steps reduce Eq. (5) to a
differential equation whose large-z solution is

f(z)- IzI
" 't"tpexp( —Iz I/P), Iz I »1.

Near the origin, Eq. (5) admits different forms for
f(z), and, correspondingly, the exponent P depends on
the form of the initial velocity distribution. To treat the
small-z limit, we divide Eq. (5) by f(z) to yield
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now takes the form with probability iv;~i. If a particle lands on an occupied
site, both particles are removed. After each move, the
time is incremented by the inverse of the current number
of particles. The advantage of this stochastic method is

that it is easily implemented in any spatial dimension, but
at the expense of introducing diA'usion in addition to the
primary ballistic motion.

A second method is an exact synchronous time evolu-

tion, an approach which is practical only in one spatial di-
mension. Particle velocities and positions are initialized
on a periodic one-dimensional chain. The collision time
for each nearest-neighbor pair is computed and the
minimum such time r;„ is retained. The particles then
move ballistically over a time z;„, so that the particle
pair whose collision time equals r;„ is removed, and the
time is incremented by z;„. The determination of r
and subsequent update of particle positions by this
minimum time interval is then iterated.

Our two simulation methods give essentially identical
results for continuous velocity distributions and we quote
exponent estimates based on the biased random walk al-

gorithm, since it can be applied in both one and two di-
mensions (Table I). Typically there is a substantial tem-
poral range for which the eAective exponent, i.e., the
slopes of successive pairs of data points on a double loga-
rithmic scale, is stable, and we adopt the average value of
the slope in this range as the exponent estimate. The ac-
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TABLE I. Numerical values for the decay exponents a and P
based on numerical integration of the Boltzrnann equation, Eq.
(4), and on Monte Carlo (MC) simulations. Results are given
for several representative initial velocity distributions.
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where the exponent combination Pd originates from an
integration over d-dimensional velocity space. To relate
the exponents p and P in the d-dimensional version of the
Boltzmann equation, we again assume a small-z power-
law form f(z) ~ ized", with p ) —d, and a relatively
sharp cutoff in f(z) for large ized. These assumptions
again lead to a qualitatively correct p dependence of P.
Namely, P monotonically decreases with p, and has the
limits P 1 for p —d, and P 0 for p ~. As in

one dimension, if we adopt f(z) ~
ized

"e i*i/~, then we
find P= I/(I+2d+2p). Conversely, as the spatial di-
mension increases, the limiting value a =1, corresponding
to the transparent limit, c= —kc, is approached but
never reached. Thus only in the d=~ limit are particle
trajectories suSciently independent that the typical veloc-
ity does not decrease. This is in contrast to many
diA'usion-controlled reactions for which transparent be-
havior occurs when d ) d, with d, finite [1].

To test our approximate analysis, we have performed
direct numerical integration of the general-d Boltzmann
equation (Table I). In one dimension, a typical integra-
tion was based on dividing the velocity range [—1, 1] into
200 bins with a time step of h, t =0.15. A finer level of
resolution gives essentially identical results. To estimate
the value of P, we computed the "test" scaling function
f(z;t)&„& tx- t '"'P(v, t) at different times, and adjusted
P&„& to achieve the best data collapse by minimizing the
rms deviation between diAerent data sets. Up to 1000
time steps, we obtained estimates for P with an uncertain-
ty of less than 0.005.

We also performed Monte Carlo simulations for ballis-
tic annihilation based on two independent approaches
(see Fig. 1). One method models the ballistic motion as a
biased random walk. In two dimensions, a particle at r;
is assigned a velocity (v;, v;, ), with iv; i, iv;~i (1, ac-
cording to an initial velocity distribution with support in

[—1, 1] [2]. A move attempt consists of picking an occu-
pied site r; at random and moving the particle by
(sgn(v; ),0) with probability iv; i

and by (O, sgn(v;~))

Dimension P (v, t =0)/cp

Uniform
,

[

—I/2/4

it i
-"'/to

Uniform

0.22
0.42
0.66
0.10

MC

0.76
0.56
0,32
0.89

N umerical
integration

a

0.77
0.60
0.37
0.91

time

FIG. 1. Representative Monte Carlo simulation results for
the concentration and the rms velocity vs time. (a) 50 realiza-
tions on a 100000 site ring at initial concentration co=0.5 with
a uniform initial velocity distribution (0 and &), and P(v, t
=0) =cpivi 't /4 (0 and k). (b) IOO realizations on a 100
x100 periodic square lattice with co=0.5 and a uniform initial
velocity distribution.
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curacy of the simulation can be inferred from the devia-
tion of the numerical estimate for a+P from its expected
value of unity. The basic conclusion from our numerics is
that the decay exponents a and P do indeed depend on
the nature of the initial velocity distribution. Notice that
the numerical integration of the Boltzmann equation is an
excellent approximation for the simulation results. One
reason for the success of this latter approach is that there
is essentially no velocity correlations beyond nearest-
neighbor particles.

The nonuniversality displayed by ballistic single-species
annihilation with continuous velocity distributions sug-
gests severa1 interesting avenues for further investigation.
One such situation is ballistic annihilation with a trimo-
dal initial velocity distribution, P(v, t =0) ee p+8(v —1)
+pod(v)+p B(v+1), with p++po+p =1. This sys-
tem exhibits considerably richer kinetics than that of
ballistic annihilation with a bimodal velocity distribution
[6,7]. For the symmetric situation of p+ =p —=—p
=(1 —po)/2, numerical simulations reveal a decay which
depends nonuniversally on po. For po 0, the density of
stationary particles decays as c —t ", with eo= 1,
while the density of mobile particles decays as c-
—t '-, with a~ = 2, as might be expected. However,
when the value of po is increased, there is a systematic
decrease in eo and a corresponding increase in a+ .
When po reaches 0.25, we find co=a+ =—3 . For larger
values of po, c saturates to a finite limiting value while
c —decays faster than a power law.

Another interesting variation is an initial bimodal ve-
locity distribution with superimposed diffusion (which
arises if the bimodal velocity system is simulated by
biased random walks). At long times, same-velocity par-
ticles can annihilate because of the diffusion. By dimen-
sional analysis, the time-dependent concentration c(t)
must be a geometric combination of co, (vot) ', and
Dt 't, only. By requiring that c(t) matches with the
known limiting behaviors at the appropriate crossover
times to the case of no drift [8] and no diffusion [6], we
determine that c(t) —t t . This has been confirmed in

MC simulations.
Finally, diffusive single species annihilation with a con-

tinuously distributed distribution of diffusion coefficients
for each reactant may prove interesting. Rapidly dif-
fusing particles wi11 explore a larger area and should de-
cay more quickly in time. Hence, it is reasonable to as-
sume that the average diffusion coeScient of the surviv-

ing particles will decay as (D)—t ~. When used in an
estimate of the mean collision time between particles, this
gives the exponent relation 2a/d+P = l. Based on the
corresponding behavior observed in ballistic reactions, we
anticipate that variable exponents a and P may also occur
for reactions where the particles possess continuously dis-
tributed diffusion coeScients.

In summary, ballistic annihilation with general particle
velocity distributions exhibits a rich variety of decay ki-
netics. Numerical and analytical approaches indicate
nonuniversality in the exponents that describe the time
dependence of the concentration and the typical velocity.
An approximate theory, based on a mean-field Boltzmann
equation, successfully accounts for the dependence of
these exponents on the initial velocity distribution. It is
intriguing that an initial velocity distribution with a large
component of slower particles gives a weak decay of the
concentration and relatively faster decay of the typical
velocity. As the spatial dimension is increased, the
"transparent" limit a=1 is approached but apparently
never reached.
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