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Symmetry-Selected Electron-Energy-Loss Scattering in Diamond
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Inelastic electron scattering using a two-beam channeling condition is used for the first time to create
excitations having selectable even or odd symmetry relative to an atom column. The method is first es-
tablished using plasmon and interband scattering in diamond. Next, for the carbon 1s absorption edge,
scattering to modes having odd symmetry gives a strong exciton peak. Scattering to modes having even
symmetry results in a depressed edge having no exciton peak in evidence.

PACS numbers: 61.14.Rq, 71.35.+z, 78.70.Dm

A core exciton has been observed at the diamond Is
absorption edge using photoyield [I1] and electron-ener-
gy-loss spectroscopies (EELS) [2]. Both methods yielded
a binding energy of about 0.2 eV, consistent with a loose-
ly bound Wannier exciton. This was treated within a
simple two-band effective mass approximation as de-
scribed by Elliott [3]. Jackson and Pederson have sug-
gested that this analysis might be inadequate [4]. Their
suggestion was based on the apparent similarity between
a carbon atom having a charge of Z +1 due to the pres-
ence of a core hole, and a nitrogen donor, which is known
to produce a much larger binding energy, of order 1.7 eV.
They pointed out that this picture leads to a qualitatively
similar spectrum, because the deep level has an 4, sym-
metry, making it inaccessible from the diamond ls core
state under dipole selection rules. They therefore de-
duced that the observed exciton might be a shallow exci-
ton having 2p symmetry. Recently, results from x-ray
emission spectroscopy suggested that the diamond con-
duction band edge might be as much as 1 eV higher rela-
tive to the ls core level than had been thought previously
[5]. This would bring the observed exciton binding ener-
gy to 1.2 eV, supporting the Frenkel exciton picture. An
arguable difficulty with this view, however, is that it re-
quires some symmetry-breaking mechanism to allow ob-
servation of the dipole forbidden exciton having 4, sym-
metry.

Thus, there is a need for a reasonably clear determina-
tion of the symmetry of the core exciton. This Letter de-
scribes EELS experiments which use a channeling geom-
etry to produce an incident swift electron wave function
that has selectable even or odd symmetry in the direction
of the reciprocal lattice vector associated with the Bragg
scattering. Electron channeling has been used in the past
to modulate the intensity of the incident electron beam,
providing site specific sensitivity for characteristic x-ray
production [6] and electron-energy-loss spectroscopy [7].
However, this is the first work that seeks to exploit the
symmetry of the electron wave function directly. Recent-
ly, inelastic x-ray scattering was demonstrated to be pos-
sible using an initial state defined by a standing wave lo-
cated at the surface [8]. In that experiment, no selection
of final-state symmetry was attempted. But it was still
possible to access the bulk plasmon energy near the Bril-
louin zone boundary, and to show that it was split into
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two bands by interaction with the crystal potential. In
the transmission EELS experiment, we can choose the
symmetry of the final state by placement of a collection
aperture. If sufficient thickness of sample exists below a
scattering event, then the scattered wave will be chan-
neled into different directions depending on whether it is
symmetric or antisymmetric relative to the atom columns.
The crystal defines a grating which, from certain direc-
tions, blocks waves except those of a certain symmetry.
Thus, if the channeling waves are established within a
certain thickness, then both the initial and final states
may be controlled to some extent by working in a sample
that is about twice that thickness.

These ideas can be developed using two-beam elastic
scattering theory, following Hirsch et al. [9]. The wave
function w(r) satisfies Shrodinger’s equation for an elec-
tron of energy £ moving in a periodic potential ¥ (r)
=2,(U,/2) explig-1),

V2y(r)+2[E —v(D)]ly(r) =0, ()]

where 1 use atomic units. [ consider here only one
Fourier component of the crystal periodic potential, g
=gs5, the first allowed Bragg reflection in the [001]
oriented diamond crystal. This choice favors solutions
that do not differentiate between the two carbon positions
in the primitive unit cell. The general solution for y be-
comes

y/j(r)=C6ei"j"+Céei(kj+g)", )

where the coefficients, Cé are obtained from the system of
linear equations formed by substitution of w into Eq. (1).
The superscript j refers to the two allowed values of k for
the electron in the crystal given by the solutions for the
dispersion relation,

(k2=K)(k+g)?—K2 —UU -, =0, (3)

and K is the magnitude of the swift electron wave vector
in the crystal corrected for the crystal average inner po-
tential, U.

The wave function appropriate for a depth z into the
crystal is a linear combination of the two solutions in Eq.
(2), chosen to satisfy boundary conditions at the top of
the crystal. In the two-beam case, this is a function of
the depth z and the horizontal distance x, parallel to g).
After some algebra, this becomes
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y=eK Tei57/2{cos(+ Akz)
—isin(§ Akz)[cosp —sinBe’®*1} , (4a)

(4b)

where s defines the distance from the Ewald sphere to the
reciprocal lattice point g, for a deviation A@ from the ex-
act Bragg condition 6. &= K cos6/2nU, is the extinction
thickness for the Bragg reflection employed for the chan-
neling. B is defined in the upper half plane, so that s >0
implies B < x/2, and s <O implies B> n/2. Thus, cosf
changes sign with s, causing a change in symmetry in the
x direction with deviation from the exact Bragg condi-
tion. This effect is maximized at the depth, z =n/Ak,
where the first term in Eq. (4a) is zero. At this depth, we
may write in simplified form for s = & 2x/¢&:

w0 =K T 2V2 [3,i8x/2[ —gin(gx/2)] ,

pl,=eKTe _i”/z‘/i\/feigX/zlicos(gx/Z)] )
There is also a second set of solutions for an incoming
beam positioned near the opposite Bragg reflecting posi-
tion:

ng=ei(K+g)-reirr/2\/5\/5e _igX/Z[Sin(gx/Z)] ,

ye, =i K+ r, —in/22 /5, ~i8x/2[icos(gx/2)] .

This set is identical to the set (5a) except for a phase
shift of # radians in the solution for +s. These solutions
also describe the behavior of a scattered wave, propaga-
ting from the position of the inelastic scattering event to
the bottom of the crystal. Figure 1 shows dispersion sur-
faces and direction of wave propagation for the swift elec-
tron within the crystal defined above in Eq. (3) following
the construction given by Howie [10]. The k, direction is
grossly foreshortened for clarity. The upper dispersion
curves give solutions for electrons moving at the primary
energy E. The lower set gives solutions for the energy-
loss electrons. Each set consists of a higher-energy, sym-
metric branch and a lower-energy, antisymmetric branch.
The points labeled w%8 summarize the positions of the
solutions used in this experiment. I summarize by ellipses
the positions and sizes (relative to gz) of collimation
and collection apertures to require the transitions (a) and
(b). In this construction, I have labeled the wave func-
tions relative to the gyyo direction, rather than relative to
the incident beam direction. This allows the final-state
labeling to remain constant, and simplifies the diagram.
An alternative construction using g0 and — g0 would
require two illustrations.

Having now defined a set of initial and final swift elec-
tron states which are not simple plane waves, it is useful
to redefine the matrix element for scattering. Following
the notation of Pines and Nozieres [11], the matrix ele-
ment can be written,

M =E_<v/f(r)l<¢,,(r,-)|‘\f(r,- =1)|go(r; N yo(r)),

s == gtanA®@, cotB=;—i, Ak =(s2+47r2/§2) 172 ,

(5a)

(5b)

(6a)

where V is the Coulomb potential, yy o denotes the swift
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FIG. 1. Dispersion surfaces and direction of propagation
near the gazo Brillouin zone boundary for swift electrons within
the sample. Two sets of surfaces summarize behavior for elec-
trons at the incident energy E and after energy loss AE. Swift
electron transitions used in this work are indicated (a and b).
Schematic positions for initial collimation and final-state collec-
tion apertures are shown. The dispersion branches are labeled

for even and odd symmetry. The Brillouin zone boundary is in-
dicated (BZ).

electron wave function and ¢, ¢ denotes the specimen ex-
citations, and the sum is over specimen electrons. We
may Fourier analyze YV and express the matrix element
as a sum over plane-wave expansions of the specimen
states,

M=) Vq<v/f(r)|2(¢,, (r) e "' go(r:))e T | go(r)) ,
q i

=q§,0 Valwr () p—ge T+ pae'@ yg(r)) , (6b)
where p,=(pd)"? is the matrix element of a charge densi-
ty fluctuation taken between the ground state and the nth
excited state of the specimen. I have also used the fact
that V,, the Fourier transform of YV (r), is an even func-
tion of g.

Expression (6b) is written to highlight the symmetry of
both the probe and specimen transitions. If the specimen
excitation is invariant under translation, for instance
high-energy single-particle transitions and plasmons, then
pg is of order g2 If the excitation is not invariant under
translation, for instance interband transitions, then p, is
of order q. Thus, the quantity within the matrix element
of expression (6b) will have even parity for plasmons, and
odd parity for interband transitions [12]. It is important
to realize that expression (6b) contains many “off-
diagonal” terms of the dielectric response, summed co-
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herently to produce the matrix element. We may now
ascertain whether the matrix element for scattering is
finite by inspection of expression (6b), given the known
parities of the specimen transition and the swift electron
initial and final states.

The instrument used here was the VG Microscopes,
HBS501 scanning transmission electron microscope, oper-
ated in this case at 120 keV. The electron spectrometer is
a Wien filter using deceleration to obtain 0.2 eV resolu-
tion [13]. The 1s core spectra were sharpened by decon-
volution [14] to a 0.32 eV resolution, limited by the sta-
tistical accuracy of the data. This work was made possi-
ble by a recent improvement of the system to include a
charge-coupled-device array detector. This produced an
increase in detection sensitivity of X100 over the photo-
diode array as described in Ref. [13] below. The dia-
mond was wedge shaped with a [100] axis parallel to the
beam direction. Electron optical conditions were chosen
to produce a roughly 2-5 nm spot size using two aper-
tures to define an illumination and collection range of
about 0.5 A ™! centered about 0.5 A ™! away from exact
[220] two-beam diffraction conditions (gap=5 A™")
near the optimum position of 0.34 A ™! for s =2x/& with
E==690 A using 120 keV electrons (K=186 A ™).
Analyses were then performed in areas having thicknesses
in the (0.75-1.25)¢ range using the various initial- and
final-state wave functions defined in Egs. (5) above. All
of the results reported here used a collection aperture
centered inside the [220] diffraction condition and 1
define this wave function as y,= l//(l:, as shown in Fig. 1.

Results for the low-energy-loss region of diamond are
shown in Fig. 2. I show three results: (a) even parity
scattering using y; =y, (b) odd parity scattering using
vi=y%,, and (c¢) axial, small angle scattering, using
v;i=y%,. I have normalized these results so that the
scattering peaks at 0 eV energy loss are normalized. In
cases (a) and (b), these are due to quasielastic phonon
scattering. In case (c) the peak is due to swift electrons
which have not been inelastically scattered.

We can see immediately that the plasmon scattering
near 34 eV is depressed on going from even parity, case
(a), to odd parity, case (b). As we noted above, this is
expected due to the even character of the charge-density
fluctuations for plasmon behavior as noted above. Case
(c) is largely due to small angle scattering, because the
initial and final swift electron directions overlap. Thus
long-wavelength even and odd parity scattering in the y
or z direction dominates the results. This is the normally
obtained result for coaxial beam definition and collection
apertures. I compare this result with Im(— 1/¢) calculat-
ed using the known optical constants for diamond [15],
extrapolated to high energy using a simple free electron
dielectric constant,

tirec(@) =1 — )/ (0 +iy)?, )
where w, =33 eV is a plasma frequency and y=8.4 eV is
a damping parameter. These values are qualitatively
correct, but detailed comparisons with previous measure-
1824

6 T T \
x10* Even Parity 7\
5F \ .
(0) \

4~ /' B
bz : 0dd Parity
s 3 /e -
= /

2 H .

i (c) Axial
0 | 1 |

0 10 20 30 40 50
Energy Loss (eV)

FIG. 2. Low-loss scattering for even parity (a), odd parity
(b), and axial collection (c¢). The spectra have been normalized
at zero energy. Case (c¢) has been compared with the prediction
using the known optical constants extrapolated to high energy.

ments should take into account the model represented by
Eq. (7). The results reproduce both plasmon and inter-
band scattering as expected.

In order for expression (6b) to fully control the ob-
served scattering, all collected intensity must be the result
of single inelastic scattering events. But the scattering in
cases (a) and (b) above also includes multiple events of
the type phonon plus plasmon. These have been treated
for the case of aluminum, and it was found that the mul-
tiple scattering may be adequately approximated by the
properly scaled angle integrated energy-loss spectrum
[16]. Case (c) approximates this result. A simple sub-
traction of case (c) from cases (a) and (b) then should
produce the parity-selected spectral results.

These are shown in Fig. 3. We see that the even parity
result is completely smooth in the 5-30 eV range. All
direct interband scattering has been suppressed by the en-
forced even character of the swift electron transition. On
the other hand, in the odd parity result the plasmon is al-
most completely suppressed, and structure in the 5-25 eV
range is enhanced. We can understand the odd parity
structure better by eliminating the plasmon polarizability
form &

€odd = Eoptical — Re(sfree -1). )

Thus, the odd parity result is compared with Im(—1/
£,dd). The agreement is striking. The quantity in Eq. (8)
and the results in Fig. 3 represent a new response func-
tion for solid-state matter.

The low-energy-loss results are therefore explainable in
terms of symmetry selection. We could use the terms di-
pole and nondipole in place of odd and even, but one
difference remains. Normally we think of dipole interac-
tions in terms of long-wavelength optical absorption or
scattering. The wavelength of the specimen fluctuations
in these experiments is of the order of the crystal unit cell
size. However, fluctuations having longer wavelength will
be accessible according to their symmetry.
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FIG. 3. Low-loss regions after subtraction of multiple pho-
non plus plasmon scattering. The even parity results show only
plasmon scattering. The odd parity results are compared with
the odd parity part of the scattering from the optical constants.

Having now established that symmetry selection is pos-
sible in this experiment, I now describe the carbon ls core
absorption, using the scattering conditions of cases (a)
and (b) above. These are summarized in Fig. 4. In this
case, the core scattering extends with high probability to
fairly large angles, so that no multiple scattering correc-
tion is necessary. We see that the odd parity scattering
shows a strong exciton. In addition, the exciton energy
appears to be coincident with the x-ray photoyield results.
This supports the recent suggestion that the swift electron
plasmon wake influences the measured energy of the dia-
mond core exciton [2]. In this case, the odd parity
scattering suppresses the plasmon wake, preventing it
from influencing the exciton binding energy. The even
parity result shows a suppressed absorption, as expected.
That the suppression is not complete is probably due to
the very relaxed channeling conditions limited by the
finite collimation and collection apertures. The core exci-
ton is absent in this result.

If the exciton were ls-like, as has been suggested re-
cently, it should be enhanced in the even parity scattering
case. If the exciton has a dipole allowed 2p symmetry, as
has also been suggested, then we should expect to see a
strong ls exciton, nearly 1.5 eV below the absorption on-
set, in the even parity result. This does not occur.

Thus, it appears that the weakly bound Wannier pic-
ture is a better description of the diamond core exciton
than the nitrogen donor model. This is not precluded by
symmetry-selection rules as long as the crystal basis set,
used to construct the Wannier exciton, includes p-like or-
bitals. These are plentiful near the diamond conduction
band edge. The observations reported here are the first to
take advantage of the channeling symmetry of both the
initial and final swift electron states. Therefore, there are
still many details to explain and alternative scattering
geometries to explore. In particular, this experiment uti-
lized the crystal to define the lateral spatial dependence
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FIG. 4. Diamond ls core absorption. The odd parity result
shows a strong core exciton. The even parity result shows a
depressed edge exhibiting no core exciton.

of the swift electron wave function. In the future, new in-
struments will be able to directly position an ultrafine
probe near or on a heterogeneous object. Then the argu-
ments here may be useful for understanding the scatter-
ing. In particular, more general formulations of the
scattering matrix elements, such as given in Eq. (6b)
above, will become useful. It is hoped that this work will
interest others in beginning careful experiments along
these lines.
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