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Low-Temperature SpeciBc Heat and Thermal Conductivity of Glasses

L. Gil, M. A. Ramos, ~ ~ A. Bringer, and U. Buchenau
Institut fur Festkorperforschung, Forschungszentrum Jillich, Postfach 1918, D 51-70 Jillich, Germany

(Received 17 July 1992)

The soft potential model (an extension of the tunneling model to include soft localized vibrations)
is shown to describe the anomalous features of the specie. c heat C„and the thermal conductivity
of glasses over the entire low-temperature range, up to and including the peak in G„/T and the
second rise of the thermal conductivity above the plateau.

PACS numbers: 63.50.+x, 65.40.—f, 66.70.+f

While the low-temperature properties of glasses can-
not be understood in terms of the standard Debye model,
they seem to be nonetheless universal [1,2]. Below 1 K,
one finds a linear specific heat and a thermal conduc-
tivity increase with T2 (T temperature). These features
can be explained within the tunneling model [3]. Above
1 K, the specific heat t „rises stronger than the Debye
T term and the thermal conductivity shows a plateau.
It has recently been shown [4] that a consistent descrip-
tion of these additional anomalous features is possible in
terms of the soft potential model [5, 6], an extension of
the tunneling model to include soft vibrations into the
picture.

What is missing, however, is an explanation of the
glassy anomalies at still higher temperatures, namely, the
peak in C~/Ts and the second rise of the thermal con-
ductivity. In terms of the vibrational density of states
g(v) and the frequency v, the peak in C„/Ts is due to
a rnaximurn in g(v)/v2, observed universally in Raman
and neutron scattering [7]. The maximum appears at a
frequency at which the corresponding crystals still have
only sound waves with a wavelength of the order of ten
to twenty interatomic spacings. In glasses, the soft vibra-
tional modes of the maximum coexist with sound waves
of that wavelength [8]. They are more numerous by 2 to
3 orders of magnitude than the tunneling states which
dominate the properties below 1 K. Consequently, these
vibrational modes do not only appear in the specific heat,
but become accessible to neutron and Raman scattering
[7, 8] as well as to numerical simulations [9]. A better un-
derstanding of these modes is highly desirable, not only
for glasses, but also for undercooled liquids [10].

Here we show that a physically plausible assumption,
which relates the asymmetry of the soft potentials to
thermal strains at the glass temperature, allows one to
describe these modes within the framework of the soft
potential model without any additional parameter. The
resulting vibrational density of states accounts for the
peak in C„/T and the second rise of the thermal con-
ductivity around 10 K. Thus one gets for the first time a
simple and consistent description of the glassy anomalies
in the specific heat and the thermal conductivity over the
entire low-temperature range.

The soft potential model postulates soft localized
modes with an efI'ective mass M and a stabilizing fourth-
order term in the potential

The origin of the configurational coordinate x is chosen
such that the third-order term of the potential vanishes.
The coefficients Di and D2 are supposed to be random
with a density of states P(Di, D2) = P(0, 0)—:P, . The
distance d is fixed by the condition W = h, /2Md2. With
this condition, the quantum mechanical balance between
potential and -kinetic confinement energy leads to level
splittings which are greater than W for any single-well
potential. Smaller level splittings are only achieved in the
double-well tunneling case (see Fig. 1). Consequently,
the energy W marks the crossover between tunneling and
vibrational states.

We have chosen to formulate the soft potential model
in natural units. The connection to Refs. [4—6, ll] is

giv n by d = gL and P = 2PogL
i/2 5/2

In the tunneling case, the above assumptions have been
shown [4] to lead to a practically constant density of
states, thus reproducing the tunneling model. For the
vibrational states, one derives [6] an increase g(v) v4.
Here we present a simple scaling argument for that in-
crease. For the purely quartic potential at Di ——D2 ——0,
the second derivative at the potential minimum is zero.
Going away from the origin of the Di-D2 plane in any
direction, the second derivative at the minimum (or the
minima) increases until it determines the splitting of the
quasiharrnonic levels at the bottom of the well(s). This
will happen when the corresponding harmonic level split-
ting gets larger than W. The coordinate zo = 2:;„/d of
the minimum obeys the equation Di + 2D2xo + 4xo ——0
and the second derivative, proportional to the square of
the harmonic frequency, is 2D2+ 12xo. Scaling Di with
a factor fs and D2 with a factor f2, one scales both xo
and the harmonic frequency v by f This transfor. ma-
tion brings the area of the Di-D2 plane with frequencies
between v and v + Av to a factor fs larger area with
frequencies between fv and fv + fAv. Consequently, as
soon as the curvatures at the Ininimum determine the
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I"IG. 1. Single- and double-well regions in the Dq-D2 plane of the soft potential model. Insets: Potentials and levels of a
typical tunneling state (left) and a typical vibrational state (right). The levels were calculated using a numerical search for
stationary solutions of the Schrodinger equation.

level splittings, the density of states must increase with
the fourth power.

As argued in earlier papers [6, 11], the sum of a con-
stant density of tunneling states, a v2 density of sound
waves, and a v4 density of soft vibrational modes implies
the existence of a minimum in g(v)/v2 and, consequently,
C„/T . The temperature T;„ofthe latter is determined
exclusively by the energy W. From analytical approxima-
tions [11], W = 1.6k~T;„. The numerical calculations
reported below gave TV = 1.8k~T;„.

From specific heat data (see Table I), T;„ranges be-
tween 0.6 and 4 K. Using crude estimates for the anhar-
monic terms [ll), one calculates a number of twenty to a
hundred atoms participating in a single soft mode (this
estimate has been recently confirmed in numerical work

on a model glass [9]) and distances d of the order 0.1 to
0.2 A. With these values, the average atomic displace-
ment of the soft modes up to the glass temperature T~
is still only about one tenth of the interatomic spacings.
Thus an expansion of the potential up to the quartic term
seems still reasonable.

The description of the maximum in C„/T or, equiv-
alently, g(v)/v, requires some kind of limitation in the
Di-D2 distribution. Otherwise the soft mode part of
g(v) would increase v4 without end. A limitation in

Di has in fact been anticipated, since it was introduced
as being due to small perturbations [6]. One thus expects
something like a Gaussian distribution of Dq around the
origin.

In order to estimate the width of that Gaussian, we

TABI.E I. Test of the relation R:—T „/T,„Tg = 1.07 for s. everal glasses

Glass
Si02
(Si02)o ss(NaO)Q, 35
GeOg
B203
Se
Polybutadiene
Polyethylene
Glycerole
LiCl-7H20

Tm B,x

(K)
10.0
13.5
8.1

3.1
5, 1
5.0
8.0
10.7

Tmin

(K)
2.1

4.0
2.1
1.0
0.6
1.4
1.3
2.2
3.3

Tg

(K)
1473
717
830
523
305
186
240
185
144

R
0.93
0.92
0.87
1.13
1.09
1.07
1.04
1.20
1.26

Ref.
[1,8, 15, 16]

[17]
[1]

[18]
[1, 19, 20]

[21]
[1, 22]

[1]
[23]
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have used a limitation scheme based on an idea of Fer-
rari, Phillips, and Russo [12]. These authors postulate a
static thermal strain in each degree of freedom, freezing
in at the glass temperature T~, in order to account for
the additional specific heat of undercooled liquids. We
ascribe the linear term in the soft mode potential (1) to
such a static thermal strain. From the free energy, one
derives a differential relation between Dr and the average
displacement

aD
=

k Td(( ')
1 B

(2)

From the (x ) value of the pure quartic potential [13],one
calculates an energy of 0.169Dr W / (k~T) / required
to generate a small Dq at D2 ——0. Weighting each Dq
with the corresponding Boltzmann factor at T~, one gets
the distribution function
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10 10 10
temperature (K)

10

We have assumed a Gaussian of the form of Eq. (3) not
only for D2 ——0, but for all D2 values. For D2, a cutoK
at barrier heights of about kr3Tg/2 is suggested by low-
temperature relaxation data [14], so we did not calculate
below D2 ———30. This cutoK, however, had only a small
influence on the results of our calculation.

In the numerical integration over the Dq-D2 plane, the
specific heat was calculated from the lowest six levels of
each single potential. The levels were calculated by a nu-
merical search for the solutions of the Schrodinger equa-
tion. In the double-well case, the lifetime of the tunneling
levels was taken into account as in the tunneling model.
In all cases, the two lowest levels were used to calculate
a density of states.

Having fixed W by its relation to Tm;„and P, by the
specific heat in the tunneling region below 1 K, both
the peak position T and the peak height in C„/Ts
are reproduced with astonishing accuracy by our crude
estimate of the width in Dq. This is illustrated for vitre-
ous silica in Fig. 2(a), where the sum of calculated soft
mode contribution (using P, = 1.5 x 10 state/atom
and W/krI = 3.8 K) and Debye sound wave contribution
is compared to experimental data [1, 8, 15, 16). The cal-
culated peak in C~/T appears at a temperature T
with T = 1.07 T,.„T~ . Table I shows that this rela-3/4 1/4

tion is not only fulfilled for vitreous silica, but also for a
number of other glasses [17—23] with an average prefac-
tor of 1.06 and a rnaximurn deviation of 19%, well within
the error resulting from the experimental determination
of the three temperatures. The ratio T~/T;„ in Table I
varies by a factor 16, showing that W does not depend
on T~.

Both vibrational and tunneling states are assumed to
interact with the sound waves, in order to explain the
universal anomalies in the acoustic properties and the
thermal conductivity of glasses [14,24]. In the long wave-
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length limit, the sound waves can be characterized by
elastic strains, a uniaxial strain e~ in the longitudinal and
a shear strain eq in the transverse case. The interaction
with the soft modes is assumed to be bilinear

x
6VI ——~& —«, bV (4)

with coupling constants A~ and A&. It has recently been
shown [4] that this assumption explains both the initial
T2 rise of the thermal conductivity and the subsequent
plateau in terms of the combined scattering of tunneling,
relaxational, and soft vibrational states. The plateau
is mainly due to the resonant scattering of the sound
waves by the soft localized vibrations. That calculation
[4] assumed a density of soft vibrations increasing with
v, without any limitation (with this condition, the reso-
nant scattering from the harmonic part of the soft modes

FIG. 2. Comparison of the model calculations (continuous
lines) to experimental data in vitreous silica. (a) Specific heat
[1,8, 15, 16], plotted as C„/T vs T (b) Thermal c. onductivity
[1,26] vs T (dashed line: earlier calculation [4]). (c) Density
of states [8], plotted as g(v)/v vs frequency v. The shaded
area shows an estimate [8] of the relaxational contribution to
the experimental data.
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has the same temperature and frequency dependence as
the Rayleigh scattering). We have modified that calcula-
tion by inserting the calculated density of soft vibrations
of Fig. 2(c) and obtained the calculated thermal con-
ductivity curve of Fig. 2(b). The calculation assumed
A~

——0.64 eV and A~ ——0.4 eV, calculated from tunneling
model Fits [25] via the relation P,A /W = 0.9Pps be-
tween the parameters of the two models (j = l, t). That
relation, derived from our numerical results in the tun-
neling regime, divers by the prefactor 0.9 from the one
derived from analytical approximations [4].

Though our calculation overestimates the thermal con-
ductivity at higher temperatures, it shows the onset of
the second rise at the right temperature, linking the form
of the specific heat curve to the form of the thermal con-
ductivity curve in a consistent way (similar to an earlier
approach [27]). In fact, the universal condition [24] l = A

for this onset in our case turned out to be reasonably well
fulfilled at and above the peak in g(v)/v .

At higher frequencies, our simple scheme begins to fail.
This is clearly seen in the comparison of the calculated
density of states to neutron data [8] in Fig. 2(c), which
show that failure at about 3 times the peak frequency.
There, however, the Debye scheme itself begins to fail as
well, not only in the glasses, but also in the correspond-
ing crystals, for well-known reasons. A "golden-rule" cal-
culation based on Eq. (4) shows that the frequency at
which the soft modes and the sound waves begin to be
overdamped because of their mutual interaction is also
of the same order.

In summary, the soft potential model accounts for the
density of states of glasses, from the tunneling and re-
laxational states treated in earlier papers up to the THz
range treated here. Though still mainly phenomenolog-
ical, such a description may pave the way for a genuine
microscopic theory.
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