
VOLUME 70, NUMBER 12 PHYSICAL REVIEW LETTERS

Shear Damping of Drift Waves in Toroidal Plasmas

22 MARCH 1993

J. W. Connor, J. B. Taylor, ' and H. R. Wilson
AEA Fusion, Culham Laboratory, AbingdonO, xfordshire, OXI4 3DI3, United Kingdom

(Received 10 August l992)

An important conclusion of earlier work using the ballooning representation is that shear damping of
plasma drift waves may be suppressed in a torus. This application of the formalism requires that the di-
amagnetic frequency have a maximum and implies that drift modes can exist only at this maximum.
Here we show that there is a far more general class of torodial drift modes. Shear damping is less well
suppressed in these new modes, but they extend over a much larger fraction of the plasma radius. They
may therefore have significant implications for plasma transport.

PACS numbers: 52.35.Kt, 52.35.Qz

A well-known instability of magnetized plasmas is as-
sociated with electrostatic drift waves. These have short
wavelength across the magnetic field, long wavelength
parallel to it, and frequency close to the electron diamag-
netic frequency m*. In this Letter we describe a new

type of drift wave in a torus, which may be important in

interpreting anomalous transport.
In a cylindrical plasma, or in a plane slab, drift waves

experience "shear damping" [1]. A mode —exp[i(nz/
L —mO)] is centered on the resonant surface m —nq(r)
=0 [q(r) =rB,/LB&] and the damping is essentially due
to the fact that energy is "radiated" from this resonant
surface (eventually to be lost by ion Landau damping or
other processes). This damping may stabilize the modes
in a cylinder.

It was first shown by Taylor [2] that in a toroidal sys-

tem, coupling between modes of different I could result
in drift modes in which the shear damping was sup-
pressed. This was later confirmed by calculations [3,4]
using the "ballooning representation" [5-7]. However,
the conclusion that these are the only, or the most impor-
tant, drift modes may have been premature. We have
now found, within the ballooning representation, a new

class of toroidal drift modes. These differ from the modes
considered hitherto in that their shear damping is less
well suppressed, that they extend over a greater fraction
of the plasma radius, and that they occur much more
generally.

The ballooning representation can be regarded as a
transform from the periodic domain 0~ 0& 2n to an

infinite domain —~ & g & ~, with the periodicity condi-
tion replaced by conditions on the behavior at infinity. It
allows one to exploit the existence of two disparate radial
length scales at high toroidal mode number n—the equi-
librium scale length r and the separation of mode reso-
nant surfaces 1/nq'(r) The .perturbation is expressed as

P =A (q)exp[i [ng nq(q——a.) —0 t][,
where tr is a free parameter, q(r) is used as radial coordi-
nate, and g is the toroidal angle. Then an expansion in

the small parameter I/n leads in lowest order to a
differential equation in the extended coordinate q alone,
with q appearing only as a parameter. The condition that
its solution be well behaved at infinity leads to a "local"
eigenvalue to(q, tr) periodic in rc. This does not itself
determine the frequency of the toroidal mode, but if the
local eigenvalue can be expanded about a stationary
point, where co(q, k) =too, then the higher-order calcula-
tions establish that a toroidal mode indeed exists with fre-
quency close to coo. If the damping is small compared to
the real frequency, the stationary point is near a max-
imum in the diamagnetic frequency co*(q). Consequent-
ly, this type of toroidal mode can occur only near a max-
imum of to*. (This is reminiscent of the plane slab situa-
tion where drift modes without shear damping also exist
only at maxima of co* [8].)

Thus the conventional theory of toroidal drift waves is
actually restricted to one special type. We will show that
there is another type, unrelated to a maximum in co*.

A model for drift waves in a circular large-aspect ratio
torus is

6
(nq')' |lx'

2II'

1 2 t)
z

—tT +inq'x —e cosO+, sinO + [0 (x) —0] p(x, O) =0,lS ~ 6
sz |1O nq' Bx

(2)

where x denotes the distance from some rational surface and s is the shear rq'/q. This is equivalent to the model used in

Ref. [9] but with the dependence on mode number n made explicit. The other parameters are defined in Ref. [9] and
are independent of n The first two . terms in Eq. (2) arise from a finite Larmor radius and the third from ion sound
(these terms lead to shear damping in the cylinder). The fourth term, proportional to the inverse aspect ratio e, is the
effect of toroidal coupling and f1*(x)—0 represents the difference between the eigenmode frequency and the local di-
amagnetic frequency.

In the ballooning transformation [5] we write
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y(x, 8) =pe ' ' e+' "j(x,rt)drt. (3)

Then p satisfies Eq. (2) in the extended domain —~ & q & ~ and need not be periodic. In order to unify the descrip-
tion of situations both with and without a maximum in co*, it is convenient to write p in the WKB form

P(x, g) =((x,ri)exp[ —inq'[xq —S(x)]j .

To lowest order in 1/n, ( must satisfy an ordinary differential equation in ti at each x,

d2
a2 + +(rt —k) +e[cosg+s(ti —k)sing] —[D*(x)—ti] &p(k, q) =0,

dg s

(4)

(5)

where k =dS/dx. The eigenvalue for this equation
defines a function fl( xk), periodic in k. In the present
simple model, A(x, k) =Q*(x)+g(k), where g(k) in-

corporates the shear damping and is periodic in k. [Note
also that ((ti+2tr, k+2tr) =((tl, k). ]

If the diamagnetic frequency Q*(x) has a maximum
at xp and g(k) is stationary at kp, we can write

an alternative method using a wave number representa-
tion for p [10-12],

p(x, q) = &(p, q)exp[ —inq'[x(q —p) —S(p)]]dp .

n =np+ —,
' [(x —xp)'n„*, +(k —kp)'gkkl (6) This can be related to the more conventional form of bal-

looning representation (4) by the transformation

(where we choose kp to correspond to a minimum rather
than a maximum in the shear damping). This defines two
branches k+(x, A), k (x, Q) which provide WKB solu-
tions

t x
aexp inq'„k+dx', Pexp inq' (7)

valid except near the turning points where k+ =k
dk/dx =~. To obtain a global solution one selects the
WKB forms which decay as x ~ ~ and extends each
around the appropriate turning point. Matching the two
forms in their common region of validity leads to the usu-
al WKB eigenvalue condition

k dx'

I

(k+ —k )dx'=integer+ 22z "
where the integration is between turning points. The im-
portant properties of this mode are (i) the radial wave
number k is restricted to a small range O(1/n 't ) around
kp, where the damping is minimal; (ii) although the mode
encompasses many resonant surfaces, it is localized
around xp and extends only over a fraction O(1/n 't ) of
the plasma radius.

We now turn to the situation when Q*(x) does not
have a maximum, e.g. , when it is essentially linear. Then,
instead of the form (6) we have

n(x, k) =np+kx+g(k),
and k (x) now has an infinite number of (periodic)
branches. The construction of the WKB solution is now
quite diA'erent from the previous case. It is impossible to
construct a global solution involving only a single WKB
term as x + ~, because solutions on all branches of
k (x) are coupled to each other when the solutions are ex-
tended around turning points. The construction therefore
involves all branches and will be discussed elsewhere. For
the present purpose it is simpler to obtain the solution by

g(x, g)exp[inq'S(x)] t g(p, tl)exp[inq'[px+S(p)]]dp,

(i i)

so that, to lowest order in 1/n, g(p, tl) satisfies Eq. (5)
with k(—:dS/dx) p and x —dS/dp. The eigenval-
ue now defines a function Q(dS/dp, p) and the eigen-
function retains the property g(p+2tr, ti+2tr) =g(p, g).
Consequently, the representation (10) will be periodic in

q if exp(inq'S) is periodic in p. Hence, if we impose this
condition, p(x, ti) will itself describe a periodic mode and
there is no need to invoke the ballooning representation:
We simply put g 0. This accords with the observation
of Dewar and Glasser [13] that the ballooning transfor-
mation may be regarded merely as a device to introduce
an infinite covering space for 0.

Using (10) we obtain, in place of (9),

—[g(p)+ np —n, ] =0,dS (i2)
dp

and the condition that ex p[inq'S (p) ] be periodic is
satisfied if

t 2~

2' J [g(p) + Qp —ti] dp = integer . (i3)

Im n = Imf~g(p)dp .
1

27K
(14)

The integral (13) represents the area between the con-
stant Q(x, k) curve and the x axis over one period of k.
This is a surprising result since it depends on the arbi-
trary origin of the x coordinate. The interpretation is
that there are eigenmodes with frequencies corresponding
to all values of A*(x) and the eigenvalue condition (13)
relates the frequency of any mode to its location. In the
present model, where X and Qo are real, all these modes
have the same damping given by
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These new modes, which do not require a maximum in

the 0* profile, are quite diAerent from those described
hitherto. Their radial wave number is not restricted to be
near a minimum in the local damping. Instead all values
contribute, as shown by Eq. (14), and the damping corre-
sponds to an average of the local value. (A similar
averaging occurs for modes in rotating plasmas [14].)
The radial structure of the modes is also diA'erent: Be-
cause the variation of g(p) —O(e) they extend over a
fraction O(e) of the plasma radius, instead of O(l/n 'i ).
(This is reminiscent of toroidal Alfven eigenmodes [15,
16].)

In conclusion, the conventional theory of toroidal drift
modes describes modes which have minimum shear
damping. However, these modes may have only limited
relevance: They occur only where the diamagnetic fre-
quency co* is a maximum and their eigenfunction spans
only O(l/n' t) of the plasma radius. In this Letter we
have shown that there is another class of drift waves in a
torus which has markedly diA'erent characteristics. These
new modes experience more shear damping (closer to that
in a plane slab or cylinder), but they can occur through-
out the plasma, not just at maxima of co*, and their
eigenfunctions span O(e) of the plasma radius.

Although these results are based on a simple model we
expect the general features to be valid for more complex
models (and indeed they may be relevant to other
toroidal modes). They may be important for the inter-
pretation of anomalous transport in tokamaks. Conven-
tional calculations (such as Ref. [3)) correctly identify
the onset of drift wave instability only in cases where co*

has a maximum. Even in that case this threshold may
not correspond to the onset of large anomalous transport,
because the unstable mode is confined to the vicinity of
the point of maximum co*. On the other hand, the new
modes can occur anywhere, whatever the profile of co*.
Furthermore, because of their extended character one
might speculate that they will 1ead to large anomalous
transport. If so, plasma profiles might be determined by
a marginal stability criterion —but one defined by stabili-
ty of the new modes, not the conventional ones. Since the
threshold for the new modes will be closer to that in a
cylinder, this might justify the use of marginal profiles

calculated with cylinder-like damping to interpret tor-
oidal experiments [17,18].
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