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General Linear Mode Conversion Coeflicient in One Dimension
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A general formula is presented for the mode conversion coefficient for linear mode conversion in one
dimension, in terms of an arbitrary 2&2 reduced dispersion matrix describing the coupling of the modes.
The mode conversion coeScient has three invariance properties which are discussed, namely, invariance
under scaling transformations, canonical transformations, and a certain kind of Lorentz transformation.
Formulas for the S matrix of mode conversion are also presented. The example of the conversion of
electromagnetic waves to electrostatic waves in the ionosphere is used to illustrate the formulas.

PACS numbers: 52.35.—g, 52.40.Db

Linear mode conversion is a fundamental process by
which linear waves interact. It is of great importance in

plasma physics, and is central to a number of physical
processes. Important work in this area in recent years
has included studies by Cairns and Lashmore-Davies [1],
Fuchs and Bers [2], Friedland [3], Friedland and Kauf-
man [4], Hickel-Lipsker, Fried, and Morales [5],
Mjdlhus and Fla [6], Williams [7], Friedland, Goldner,
and Kaufman [8], Kaufman and Friedland [9], Tracy
and Kaufman [10], Romero and Scharer [11],and Kull,
Kashuba, and Berk [12], and a review has been written

by Stix and Swanson [131. The field has been very active,
and what we oAer here is only a representative list.

In this paper we report general formulas for the mode
transmission and conversion coefticients T and C and the
S matrix which represent the coupling of two linear
modes of oscillation of a plasma. Our formulas give t", T,
and S as explicit functions of the (reduced) dispersion
matrix in the mode conversion region. Previously, these
quantities have been worked out only for dispersion ma-
trices of special forms; typical assumptions have been that
the ofI-diagonal elements are small and constant, or that
one of the components of the dispersion matrix is small
and slowly varying in both x and k. Our formulas, on the
other hand, remove all such assumptions.

The assumptions we do make are the following. The
first is that the plasma has a spatial variation in only one
direction, which is what we mean by "one dimension" in

the title of this Letter. Slab models are allowed under
this designation. The second assumption is that mode
conversion actually occurs. This is equivalent to assum-
ing that two of the eigenvalues of the dispersion matrix
are small in some region of the x-k phase plane. Third,
we assume that the dispersion matrix is Hermitian. This
is an assumption of mathematical convenience which we

plan to remove in the future; for the time being it restricts
the applicability of our methods to cold Auid and certain
other models.

To emphasize the generality of our methods, we will
outline how one can extract a mode conversion problem
out of an essentially arbitrary set of coupled linear wave
equations. We begin with a wave equation of the form

D,pyp=0. As an example, y, for a =1,2, 3 might be the
electric field and D,~ the usual 3x3 dispersion matrix
D,tt(x, k), promoted into a linear operator by replacing k
by —i8/Bx; but actually our methods can be applied to
general systems of coupled wave equations, so we allow

y to stand for any vector of field variables, D ~ to stand
for any matrix of linear wave operators, and D,tt(x, k) to
stand for the corresponding generalized dispersion ma-
trix, a matrix of functions of x and k. [The caret stands
for a linear operator, and distinguishes the matrix of
wave operators D,tt from the dispersion matrix D,tt(x, k).]
We assume that the plasma is stationary and that the
dispersion matrix depends implicitly on the frequency co.

When the wave equation D pyp=0 is solved by WKB
theory [14,15], the waves can be visualized as living on
the "dispersion curves" A, (x, k) =0 in the x-k phase
plane, where A, (x,k) is an eigenvalue of D,tt(x, k). The
waves have the form y, (x) =A, (x)E' t"~ where A, is the
vector amplitude and S is the rapidly varying phase. But
the WKB solution breaks down if two dispersion curves
come close together in some region of the phase plane, as
illustrated schematically by the dotted circle in Fig. 1.
We refer to such regions as "mode conversion regions"; in

such regions, the dispersion curves are approximated by
hyperbolas, and WKB theory is not valid because the

FIG. 1. Schematic illustration of a typical mode conversion
in the x-k phase plane in one dimension.
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eigenvectors of the dispersion matrix are rapidly varying.
This point has been discussed by Friedland and Kaufman
[4] and ourselves [15]. In the mode conversion regions,
two eigenvalues of D,p(x, k) are small, since the curves
where two X's vanish come close together. WKB theory
is valid outside the mode conversion region; there are four
branches in this outer region, labeled 1,2, 1,2 in Fig. 1, on
which WKB waves live. These branches are coupled
within the mode conversion region itself.

We now define the mode transmission and conversion
coefficients and the S matrix. We write c;yr„(x), i =. I,
2, 1,2, for the four WKB waves entering or exiting the
mode conversion region, where the c s are constant co-
efficients. We imagine that waves 1 and 2 enter the mode
conversion region, and waves 1 and 2 exit. The ampli-
tudes 8 of these four branches are normalized to repre-
sent unit action ffux, i.e., g, IA, I 8X/Bk = I, and certain
phase conventions are observed which we will describe in

forthcoming publications. Then in terms of the c s, we
define the S matrix by

C) 1 l S12 C1

(2)

It turns out that (xo, ko) is at the crossing of the asymp-
totes of the hyperbolas formed by the dispersion curves;
this definition generalizes the earlier definition of Cairns
and Lashmore-Davies [I] for the mode conversion point.

In the mode conversion region, the coupling of the two
modes is described by a 2 x 2 matrix, a reduced version of
D,fi or D,p(x, k). An algorithmic process whereby an ar-
bitrary system of coupled wave equations can be reduced
to a 2x2 form has been described by Friedland and
Kaufman [4]; we present here a simplified prescription,
valid when one wants only the form of the reduced 2x2
matrix in the mode conversion region. Our prescription
will be justified fully in future publications. Given an
1Vx1V matrix D,p(x, k) and a mode conversion point (xo,
ko) defined as above, we compute the orthonormal eigen-
vectors of D,p(xo, ko) (at the mode conversion point) and
transform D,p(x, k) (at any point) to the basis given by

C2 S2] S22 C2

so that the components of S specify both the amplitudes
and phases of the coupling. Finally, we define the mode
transmission and conversion coefficients by T =IS||I
C=l —T; C is the amount of action Aux exiting on
branch 2 if unit action enters on branch 1 and zero action
enters on branch 2. The S matrix is unitary, and satisfies
T=IS;,I'= IS||I'

Now we assume that two eigenvalues of D,p(x, k), say,
kl(x, k) and X2(x, k), are both small in some region of
the phase plane. This is the "mode conversion region, "
and we define a certain point (xo, ko) in this region, the
"mode conversion point, " as the point where the product
Xik2 is stationary with respect to both x and k. That is,
(xo, ko) is the root of

D
& ~

= —g/(I + Y) —2A (n„cosa+ n, sinu),

D f 2 =2 [n~ +i (n„sin a n, cosa) ]/J2,— (3)

these eigenvectors. Then the reduced 2&2 matrix in the
mode conversion region is the submatrix of the original
matrix corresponding to the two small eigenvalues. This
matrix still depends on x and k; but since the transmis-
sion and conversion coe%cients T and C and S matrix de-
pend only on D,p and its derivatives in the mode conver-
sion region, it is often convenient to expand D,p(x, k) to
first order in x and k about the mode conversion point.

We have stated that our formulas for the mode
transmission and conversion coefticients are more general
than previous formulas which have been given; but such
generality is not needed unless actual problems give rise
to dispersion matrices which are not already in some
standard form. We now give an example which shows
that such generality is indeed required.

We consider the problem of electromagnetic waves
transmitted from the surface of the Earth into the iono-
sphere, where they convert into electrostatic waves in the
magnetized plasma at the resonance layer cu=coi, (x).
This problem has an extensive literature [16-18], of
which the recent work by Mj&lhus is the most complete.
We begin by summarizing our assumptions and notation
for this problem. We place the x axis vertical, we place
the y and z axes so that the Earth's magnetic field (as-
sumed constant) has the direction b =x cosa+ zsina. We
use a slab model with variation only in the x direction, we
use a cold Quid model, ignoring the dynamics of the ions,
we introduce the dimensionless parameters +=cop(x)/
co, Y= IQ, I/co, and we write N=kc/co. We take the
case co) IO, I, i.e. , Y(1. The phase plane coordinates
are (x,k„), or, equivalently, (X,N„), which are functions
of one another along a ray. The quantities %~ and N, de-
pend on the launch angle and are constant along a ray.
Mode conversion will not occur, i.e., two eigenvalues of
the dispersion matrix will not be small in the same region
of the phase plane, unless the launch angle is chosen
so that when the ray passes near the resonance layer
X= 1, the vector N is close to N, =Ab, where 2 = [Y/(I
+ Y)] '~ . We assume the launch angle is so chosen, and
we write X=1+(, N =N, +n where g and n„are small
in the mode conversion region and n~, n, are small every-
where. We now regard (g, n ) as the coordinates in the
phase plane.

With these assumptions, mode conversion couples the
left circularly polarized electromagnetic wave with the
Langmuir wave, and the eigenvectors of the dispersion
matrix at the mode conversion point are simply (b, e+,
e ), where e~ =(y+ bxy)/J2. In this basis, the dis-
persion matrix nearly block diagonalizes in the mode con-
version region, and the 2x 2 subblock describing the mode
conversion has the components
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with D2i =D i2. Notice that the oA'-diagonal elements are
not small constants, nor are they slowly varying, since as
we move away from the mode conversion region, n as-
sumes values which are not small. We have neglected
terms quadratic in g, n in these expressions, so the formu-
las given are valid only in the mode conversion region.
We now return to our presentation of the transmission
coefficient for a reduced dispersion matrix of arbitrary
form.

Before writing down the formula for the transmission
coefticients T, we note some invariance properties which
it must have. First, we note that T cannot change if D,p
is subjected to a scaling transformation, D,p cD ~,
where c&0 is a constant, because such a transformation
is equivalent to simply multiplying the wave equation
D,~@~=0 through by c, with no eAect on the physics.
Therefore T must be a homogeneous function of degree 0
of D p and its derivatives. Next, the transmission coef5-
cient T cannot depend on the canonical coordinates used
in the phase plane, a fact which has previously been ex-
plored by Friedland, Goldner, Kaufman, and Tracy [8-
10]. This is because action fluxes in WKB theory are in-

dependent of canonical coordinates. The invariance or
covariance of WKB theory under canonical transforma-
tions was explored in an early paper by Miller [19], and
since that time has been the subject of deep investigations
by mathematicians [20]. In the present case, it means
that the formula for T in terms of D p must have the
same form if (x,k) are replaced by any new variables
(x', k') which are related to (x,k) by a canonical trans-
formation. This in turn implies that any derivatives with
respect to x and k which appear must be expressible in

terms of Poisson brackets.
A final invariance property of the formula for T follows

from the fact that the transmission coe%cients cannot
change if we mix the two wave fields in the wave equation
D pyp=O, which describes the two coupled modes. That
is, if we write y, =Q,&y&, where y and y' are respectively
the old and new wave fields and Q,p is some constant,
possibly complex, invertible, 2&2 matrix, then we will

have transformed the wave equation into D,'gyp =0,
where the new dispersion matrix is given by D'=QtDQ
(we have multiplied the wave equation on the left by Qt
so that D' will be Hermitian). Then the form of the for-
mula for the transmission coefficient must be the same,
whether we use D or D'.

It turns out this final invariance property is equivalent
to invariance under a kind of Lorentz transformation.
These Lorentz transformations have nothing to do with
relativity theory in a physical sense, but have the same
mathematical structure as physical Lorentz transforma-
tions. To show how this comes about, we parametrize the
four components of D p by a real four-vector 8", p =0, 1,
2, 3, where 8 = (D ~1+D22)/2, 8 ' = (D|2+ Dpi )/2, B
= i (D

~ q
—D21)/2, 8 = (D 1 1

—D22)/2, or, compactly,
D =8"a„, where a.0=I and cr;, i =1,2, 3, are the Pauli

(4)

In this formula, B~p is the four-vector corresponding to
D,p(xp, kp), indices are raised and lowered as in relativity
theory with the metric g„„=diag(+ 1, —1, —1, —1), and
the curly brackets are the x-k Poisson brackets, which are
evaluated at the mode conversion point (xp, kp). Further-
more, the S matrix is given by Si i

= —S2z = —e, Si2
=5j, =e '~C', where P =ac/4+argI (iy)+ y

—ylny.
The quantity y is the simplest scalar one can form from
B"(x,k) with the required invariance properties; thus it is

no surprise that T is a function of y. The actual function-
al form is obtained in the usual way, by solving parabolic
cylinder equations. In our formula for y, the derivatives
of D ~ with respect to x and k are equivalent to the group
velocities and equilibrium gradients seen in the formula
given by Cairns and Lashmore-Davies [1].

We return now to our example, given by the dispersion
matrix in Eq. (3), and first ask for the mode conversion
point as specified by Eq. (2). We note that A, ~A,2=detD
=8"8„,and perform a short calculation to find the coor-

dinates of the mode conversion point, gp= —A(1+ Y)n,
x sina/d, n„p = —(1+2Y)n, sinacosa/d, where d =1+(1
+2Y) cos a. It is then straightforward to calculate y
from Eq. (4); we find, in agreement with Mjdlhus [18],

y=(cp/cX')(Y/8d) '
[n~ +2(1+Y)n, /d], (s)

where X'=dX/dx evaluated at X=1. Mj/lhus derived
this result by using special methods (i.e. , methods which
do not obviously generalize to other dispersion matrices),
and he treated several diAerent cases separately.

In conclusion, we mention three further points. First,
singularities of dispersion matrices of the form I/[co

matrices. Next, when we perform the transformation
D'=Q DQ, we demand that detQ =+1, because if
detQa 1, we can multiply by a constant to make detQ= l.
(The constant gives us a trivial scaling transformation,
discussed above. ) In group theoretical language, we have
restricted Q to the group SL(2,C). Then when we trans-
form D according to D'=Q DQ, it turns out that the
four-vector 8" transforms according to a Lorentz trans-
formation, 8'" =A„"8', where A is a 4x4 real Lorentz
transformation matrix which depends on Q. This fact is
well known in relativistic quantum mechanics [21], in
which Q matrices of the kind we have described are used
to perform Lorentz transformations on spin 2 particles.
The significance of these facts for our purposes is that if
the transmission coefIicient T is expressed in terms of the
four-vector 8", then it must be manifestly invariant under
Lorentz transformations.

These three invariance properties, scaling, canonical,
and Lorentz invariance, almost uniquely determine the
formula for T. The actual formula, which is one of our
principal results, is T =exp( —2xy), where
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—II(x)] are subsumed under our formalism, and Eq. (4)
applies. In the neighborhood of such singularities, the
dispersion curves behave like k = I/x, which are hyperbo-
las as in Fig. 1. A 45 rotation in phase space, as used by
Tracy and Kaufman [10], converts the corresponding
wave functions into parabolic cylinder functions. Our
formula (4), being a canonical invariant, does not care
about the orientation of the hyperbolas. Second, many
physical processes involve multiple mode conversions,
sometimes occurring at a single spatial point. As long as
these are separated in phase space, they can be treated in-

dividually, with ordinary WKB propagation in between
(possibly in k space). Thus, various re[]ection coefficients
can be computed by compounding elementary 5 matrices
as given here. Third, our transformation theory is impor-
tant for mode conversion in higher dimensions. Such
problems have previously been studied in cases of high
symmetry, but very little is known about generic cases.
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