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It is demonstrated theoretically that the critical Rayleigh number for transition from the no-motion
(conduction) to the motion state in the Rayleigh-Benard problem of an infinite fiuid layer heated from
below and cooled from above can be significantly increased through the use of feedback control stra-
tegies eAecting small perturbations in the boundary data.

PACS numbers: 47.27.Cn, 47.20.Ky, 47.27.Te

Rayleigh-Benard convection occurs in a horizontal
fluid layer heated from below and cooled from above. As
the temperature diA'erence between the layer's bottom
and top (expressed in non-dimensional form as the Ray-
leigh number) increases, the state of the system under-

goes a sequence of bifurcations from no-motion to time-
independent, cellular motion to time-dependent (possibly
periodic) motion to chaos and turbulence.

The Rayleigh-Benard problem has been studied exten-
sively in the physics and engineering literature [I]. From
the fundamental point of view, this problem is of interest
as it provides an experimentally realizable system for
studies of nonlinear phenomena in dissipative systems
such as pattern formation, bifurcation sequences, and the
transition to turbulence. From the practical point of
view, this problem is a paradigm for many important nat-
ural and technological processes such as convection in the
atmosphere, in the oceans, in stars, and in the melt of
solidification and crystal growth processes.

In many situations, it may be advantageous to alter the
normally occurring bifurcation sequence. For example,
to improve crystal quality in crystal growth processes, it

may be desirable to maintain the no-motion conductive
state for Rayleigh numbers (R) far exceeding the critical
one for the onset of convection (R, —1707.76).

In previous experimental and theoretical work [2], we

were able to demonstrate that the bifurcation structure of
simple convective systems exhibiting temporally complex
behavior such as the thermal convection loop (which can
be considered an experimental analog of the Lorenz equa-
tions [3]) can be controlled. In this Letter, we wish to ex-
tend similar ideas to the contro1 of the bifurcation struc-
ture of the Rayleigh-Benard problem, which exhibits both
spatial and tempora1 complexity. More specifically, this
Letter focuses on the use of feedback control to delay the
transition from the no-motion state to the motion state.

Let us begin by considering an infinite, horizontal,
Boussinesq's fluid layer. The layer is oriented so that its
horizontal boundaries are normal to the gravity vector
(which is parallel to the z coordinate). In the classical
problem, the lower and upper boundaries (z =+

2 ) are
maintained at uniform temperatures with the bottom

In the above, a =k„+k», D =d jdz, and Pr is the IIuid's
Prandtl number (the ratio between the kinematic viscosi-
ty and the heat diA'usivity). The boundary conditions of
the classical problem correspond, respectively, to zero
temperature disturbance, zero normal velocity, and no
slip at the horizontal boundaries (z = ~

2 ):
T=O,

(D' —a2 —cr)T=O,

D(D —a —cr) T =0.

(2)

(3)

(4)

The classical problem of stability [Eqs. (1)-(4)] is
self-adjoint and it can be shown that the growth rate a. is
a real quantity (the principle of exchange of stability is
valid). To solve the classical stability problem, one deter-
mines the smallest Rayleigh number for which the growth
rate o.=0. Once the growth rate becomes positive,
the no-motion solution is nonstable and will not be ob-
served in experiments. Criticality occurs [4] when R,

maintained at a temperature higher than the top. The
temperature difference between bottom and top is the
driving force. The conservation equations describing the
fluid motion and the nondimensionalization scheme are
given, for example, in Chandrasekhar [4] and for
brevity's sake are not repeated here. The equations of
motion admit a no-motion (conduction) solution. The
stability of the no-motion state in the presence of small
perturbations can be investigated using linear theory.
The arbitrary perturbation quantities (deviations from
the conductive solution) are expanded into a Fourier
series whose components (normal modes) are of the form
f(z)exp[i(k x —k»y)+crt], where x and y are horizontal
Cartesian coordinates, l is time, k~ and ky are wave num-
bers of the periodic disturbances in the x and y directions,
respectively, and o. is the growth rate. For the no-motion
state to be asymptotically stable, Re(cr) must be negative.
The linearized equation for the temperature disturbance
T(z) of the classical problem is [4]

(D' —a') (D' —a' cr)(D' —a' —cr/—Pr) T(z)
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—1707.762 and a, —3.117. These values are indepen-
dent of the Prandtl number.

Our objective is to maintain the no-motion state at
Rayleigh numbers significantly exceeding the critical one
(R, ) while we nominally maintain the same boundary
conditions as in the original problem. To accomplish this
objective, we propose using a number of sensors to mea-
sure the deviation of the quid's temperature from its
desired (conduction) value in a horizontal platform (i.e.,

z =0). The heat applied to the bottom boundary is

slightly modified in proportion to this deviation. At loca-
tions where the flow is hotter than usual and the fluid
tends to ascend, the boundary temperature is reduced to
assist in dissipating the excess heat. The reverse occurs
at locations where the fluid descends. Mathematically,
this control strategy is manifested by modifying the
boundary condition (2) to read

T( ——,
' ) =C(T(0)) and T( —,

' ) =0.
In the above, C( ) is the controller's function. It is con-
venient to make C a linear function of its argument. For
the purposes of this paper, we will use the proportional
control:

T( ——) = —KT(0) and T( —' ) =0,

where K is the controller's gain. The control strategy can
be easily extended to include differential and integral
controls. As our objective in this Letter is merely to
demonstrate feasibility, we shall focus the discussion
mostly on the proportional controller. We wish to deter-
mine the effect of the controller's gain K on the critical

Rayleigh number at transition. To this end, we need to
solve the modified eigenvalue problem consisting of Eqs.
(I), (6), (3), and (4). In the modified problem, exchange
of stability is not guaranteed and one cannot take o. =0 at
criticality. For a chosen controller's gain (K), the solu-
tion procedure consists of the following steps: (i)
Prescribe a value for the wave number a; (ii) search for
values of R and Im(cr) so that Re(o) =0 and the equa-
tions are nontrivially satisfied; (iii) repeat the calculation
for different a values. The critical Rayleigh number

R, ,g =min, R.
Following Reid and Harris [5], we solve the system,

(I ), (6), (3), and (4) by substituting a solution of the
form

3

T(z) = g [(even);cosh(x;z)+ (odd);sinh(x;z)j, (7)

where x; (i = I, 2, and 3) are the positive square roots of
the solutions of the cubic equation

(x —a') (x —a ' —a) (xz —a z —a/Pr)+ a'R =0

for x; . In (7), terms with coefficients (even) and (odd)
correspond, respectively, to even and odd modes. Upon
substituting (7) into the boundary conditions (6), (3),
and (4), one obtains a set of six linear algebraic equations
for the coefficients (even); and (odd);. To assure that all

these coe%cients will not be identically zero, we need the
system's determinant

M 2
Det O ~ =0.

!
In the above, 0 is a 3&3 matrix with all its entries be-

ing zeroes,

sinh 2 xi sinh 2 x2 sinh —,
' x3

M= (x~ —a —a)sinh & x~ (xz —a —a)sinh 2 xz (x3 —a —a)sinh 2 x3

x~(x~ —a —cr)cosh 2 x~ xz(x2 —a —a)cosh 2 xz x3(x3 —a —a)cosh & x3

corresponds to the odd modes, and

2 K+cosh 2 xi

N = (xi 0 0')cosh 2 xi

—,
' K+cosh —, x2

(xz —a' —cr)cosh —,
' xp

2 K+cosh 2 x3

(x3 a a')cosll 2 x3

x~(x~ —a —cr)sinh —,
'

x~ xz(xz —a —a)sinh 2 xz x3(x3 —a —cr)sinh —,
' x3

corresponds to the even modes. As in the classical prob-
lem [4], the determinant (9) can be factored and one may
seek the critical R and Im(cr) values which satisfy either
Det[M] =0 or Det[N] =0. Clearly, the control strategy
proposed here affects only the even modes. The critical
Rayleigh numbers corresponding to the odd modes are re-
ported in Chandrasekhar [4] and their smallest value is
17610.39 which is 10.3 times larger than the critical
Rayleigh number of the uncontrolled (K =0), even
modes.

Our objective is to determine the R, ~ corresponding to

1 Det[N] =0 and Re(cr) =0. To obtain these values, we

employ the software package AUTO [6] which is capable
of tracing bifurcation diagrams. The results of our com-
putations are depicted in Figs. 1 and 2. Figure 1 depicts
the normalized critical Rayleigh number at loss of stabili-
ty r =R, «/1707. 762 as a function of the wave number
for the controller's gain K=7 and for Prandtl numbers
Pr=0. 1, 0.5, 0.7, and 7. The solid and dashed lines cor-
respond to loss of stability through a real eigenvalue
[Im(a) =Re(a) =0] and through an imaginary eigenval-
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FIG. l. The critical, normalized Rayleigh number (r) at the
onset of convection is depicted as a function of the wave number
a for controller's gain K=7 and for Prandtl numbers 0.1, 0.5,
0.7, and 7. The solid (independent of the Prandtl number) and
dashed lines correspond to bifurcation through real and imagi-
nary growth rates, respectively. The most dangerous mode (a, )
corresponds to r, =min, (r).

ue [Im(o) &0, Hopf bifurcation], respectively. Intersec-
tions of the solid lines by the dashed ones correspond to
triple-point bifurcations. As the Rayleigh number ex-
ceeds each of these points, the real part of three o values
changes simultaneously, from negative to positive. As is
evident from Eq. (8), when the principle of exchange of
stability is valid (along the solid line), the results
are independent of the Prandtl number just as in

the classical (uncontrolled) case. The Hopf bifurcation
(dashed line), however, depends on the magnitude of the
Prandtl number. As the Prandtl number increases, the
Hopf bifurcation occurs at lower values of the Rayleigh
number.

Figure 2 depicts the critical normalized Rayleigh num-
ber (r, the solid line) and the normalized wave number
a/3. 117 (dashed line) at criticality. The lines correspond
to bifurcation through a simple eigenvalue. They are val-
id for Auids with Pr & 1. For high Prandtl number fluids,
only portions of the curve may be valid as the Hopf bifur-
cation into oscillatory convection (not shown in Fig. 2)
may take place prior to the simple bifurcation (through a
simple eigenvalue). For example, for a fluid with Pr=7,
the curve in Fig. 2 is applicable only for K & 6. Figure 2
demonstrates that both the critical Rayleigh number at
the onset of convection and the most dangerous wave
number increase as monotonic functions of the con-
troller s gain. There is no point in using much larger con-
troller gains than those shown in Fig. 2 since soon there-
after one gets to Rayleigh numbers at which the odd
modes are destabilized and the controller presented here
has no eftect on these modes.

An important issue not addressed in this Letter is the
size of the basin of attraction of the stabilized no-motion
state. In the classical problem, as long as R &R„ the
fluid motion will eventually decay regardless of distur-

FIG. 2. The critical, normalized Rayleigh number (r) and
the most dangerous mode (a) at the onset of convection are de-
picted as a function of the controller's gain K. Only bifurca-
tions through a real growth rate are shown.

bances' size. In other words, the no-motion state is glo-
bally attracting and the bifurcation into time-independent
motion is supercritical. We do not yet have estimates of
the size of the basin of attraction of the stabilized no-

motion state. Based on numerical experiments, we can,
however, make the following tentative observations. For
small controller gains, i.e., K & 5, the bifurcation into the
motion state is supercritical and the no-motion state is

globally attracting. For larger K values (i.e., K & 6), one
can identify three regimes: (i) For R & Ro(K) [i.e. ,

RG(7) —8850], the no-motion state is globally attracting.
(ii) For RG(K) (R (R, (K) [i.e. , R, (7) =9580], the
domain of attraction is finite. Depending on the distur-
bances magnitude and/or the initial conditions, the sys-
tem will assume either a no-motion or a time-independent
motion state. (iii) For R & R„ the no-motion state be-
comes unstable with any disturbances. The establishment
of the global stability characteristics of the controller re-

quires further study.
The analysis assumed that the temperature distribution

along the layer's midplane is known, that the bottom tem-
perature can be continuously varied, and that the
actuator's response is instantaneous. In practice, howev-

er, one may have to content oneself with a finite number
of sensors and actuators and with a delayed sensor
response. To test whether the no-motion state can still be
stabilized with a finite number of sensors and actuators,
we simulated the two-dimensional Oberbeck-Boussinesq
equations numerically using central diAerences. The
simulations were performed on a finite width medium
with periodic boundary conditions. Although various
widths were tested, in most of the simulations we used a
width equal to the most dangerous wavelength, predicted

by linear theory, for the chosen controller's gain. In the
simulations, four temperature sensors were evenly distri-
buted along the cell's midplane and the bottom surface
was divided into four segments whose temperatures were
uniform and could be independently controlled. A
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FIG. 3. The temperature T(0,0, t) is depicted as a function
of time for R =3500 (r —2), Pr =0.02 (i.e., mercury), and a
cell of width 0.72. The simulation starts with a no-motion state
and without a controller. The controller is switched on at time
t =0. Three types of controls are examined: (i) proportional
control (gain 5) without a time delay (dashed line); (ii) propor-
tional control (gain 5) with a time delay of 0.045 (light solid
line); and (iii) proportional (gain S) and dilferential (gain 0.05)
control with a time delay of 0.045 (heavy solid line).

representative result of one of our simulations is depicted
in Fig. 3 for R =3500 (r —2), Pr =0.02 (i.e., mercury),
and a cell of width 0.72. The critical Rayleigh numbers
for the uncontrolled and controlled (K =5) systems with
a similar cell width are about 1929 and 5480, respective-
ly. Figure 3 depicts the temperature T(0,0, t) as a func-
tion of time. The simulation starts with a no-motion state
and without a controller. Since the Rayleigh number for
the uncontrolled system is supercritical, an intentionally
introduced disturbance induces counterclockwise Aow in
the cell. Time-independent How is established once tran-
sients die out. Once convection has been established, the
controller is switched on (at time t =0 in Fig. 3). Three
types of controls are examined: (i) proportional control
(gain 5) without a time delay (dashed line); (ii) propor-
tional control (gain 5) with time delay of 0.045, which for
a cell of 0.01 m height and an average temperature of
50'C corresponds to 0.9 s (light solid line); and (iii) pro-
portional (gain 5) and dift'erentia] (gain 0.05) control
with the same time delay (heavy solid line). Witness that
in each of the three cases set forth above, the controller
successfully suppresses the motion and the temperature
decays to its conductive, no-motion value of 0.5. In the
absence of a time delay, the decay is monotone. In the
presence of a time delay, the decay is oscillatory. These
oscillations can significantly be reduced by engaging a
difTerential controller. In Fig. 3, we imposed on the con-
troller the daunting task of suppressing already estab-
lished motion. Had we gradually increased the Rayleigh
number from its no-motion value while the controller was
being engaged, the control task would have been much
easier.
1798

We have carried out similar simulations for other pa-
rameter values to find that the controller can cope with
larger Rayleigh numbers and larger time delays than the
one depicted in Fig. 3. Also, one can use more elaborate
control strategies to improve the controller's performance.

Note that the magnitude of the bottom temperature
modulations required to aAect the control is proportional
to the noise level in the controlled system. In the pres-
ence of low amplitude noise, the deviations of the bottom
temperature from its nominal value will be small. In the
presence of large amplitude noise the controller may satu-
rate.

In summary, we have demonstrated theoretically that a
simple control strategy can significantly shift the bifurca-
tion point for the onset of convection. Behringer [I] re-
ports observations of turbulent Aow in an infinite layer at
Rayleigh numbers as low as 2000 while we can maintain
the no-motion state for R & 10 . Thus, the controller is
clearly capable of suppressing turbulent behavior. Of
course, the theoretical results need to be experimentally
verified, In practice, the success of the controller will de-
pend to a large extent on the magnitude of background
noise in the system. Nevertheless, one ought to keep in

mind that we have used here a very simple control stra-
tegy. It is more than likely that additional gains can be
obtained by employing control strategies more sophisti-
cated than the one described here. If that is the case, the
proposed technique or modifications thereof may be use-
ful in a variety of material processing and crystal growth
processes. The current remedy for convective currents is
to go to a low gravity environment out in space. We are
proposing here a less glamorous but also considerably less
expensive alternative.

This work was supported, in part, by the Department
of Energy, 0%ce of Basic Energy Sciences, through
Grant No. DE-F602-92ER14271. The numerical simu-
lations were conducted using the Cornell National Super-
computer Facility. We are grateful to Professor E.
Doedel for providing us with the software package AUTO.

' All correspondence should be directed to this author.
Electronic address: baueniac. seas. upenn. edu

[I] For a lucid review of the Rayleigh-Benard problem, see
R. P. Behringer, Rev. Mod. Phys. 57, 657 (1985).

[2] J. Singer, Y-Z. Wang, and H. H. Bau, Phys. Rev. Lett.
66, 1123-1125 (1991); J. Singer and H. H. Bau, Phys.
Fluids A 3, 2859-2865 (1991); Y-Z. Wang, J. Singer,
and H. H. Bau, J. Fluid Mech. 237, 479-498 (1992).

[3] E. N. Lorenz, J. Atmosph. Sci. 20, 130-141 (1963).
[4] S. Chandrasekhar, Hydrodynamic and Hydromagnetic

Stability (Dover, New York, 1981),Chap. 2.
[5] W. H. Reid and D. L. Harris, Phys. Fluids 1, 102-110

(1958).
[6] E. Doedel, H. B. Keller, and J. P. Kernevez, Int. J. Bifur-

cation Chaos 1, 493-520 (1991); 1, 74S-772 (1991); E.
Doedel and 3. P. Kernevez, "AUTo: Software for Con-
tinuation and Bifurcation Problems in Ordinary
Differential Equations, "

Applied Mathematics, California
Institute of Technology, 1986 (unpublished).


