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The destruction of quantum localization of chaos by weak nonlinearity is analyzed on the basis of the
Chirikov criterion of overlapping resonances. It is shown that for the nonlinear coupling constant there
is a delocalization border above which localization is destroyed. In this delocalized phase, excitation is
described by a universal anomalous subdiffusion law. Applications of this phenomenon to nonlinear
wave propagation in disordered media and Anderson localization are discussed.
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During the last decade great progress has been
achieved in the understanding of quantum dynamics of
classically chaotic systems [1]. One of the most interest-
ing phenomena in this field is the quantum localization of
dynamical chaos [2]. At first this eA'ect was observed in

numerical experiments with the kicked rotator model [3]
and later it was explained theoretically [4,5]. In some
respect this phenomenon can be considered as the dynam-
ical version of Anderson localization for which quantum
interference leads to suppression of classical chaotic
dift'usion [5,6]. The manifestations of dynamical localiza-
tion were observed not only in the numerical experiments
with simple models but also in real laboratory experi-
ments with hydrogen atoms in a microwave field (see [2]
and references therein).

Another domain where the discussed phenomenon can
take place is the propagation of linear waves in

waveguides (or fibers). For propagating waves the locali-
zation suppresses the growth of aperture angle with the
waveguide length and leads to effective intensity trans-
mission [7]. Here a new and interesting type of problem
arises if the waves propagate in a nonlinear media. This
problem puts the question of general interest: How is the
localization, appearing as the result of linear wave in-
terference, modified by the introduction of small non-
linear wave interaction? We will see that there is a criti-
cal strength of nonlinear coupling below which the locali-
zation remains. Above this border a delocalization takes
place and the number of excited linear modes grows ac-
cording to the derived anomalous subdiffusion law. This
excitation is much slower than the chaotic diffusion of
classical rays so that the suppression of classical chaos by
quantum (or linear waves) interference is not completely
destroyed. The obtained subdiffusion law is of a universal
nature since it always takes place in the limit of weak
nonlinearity when the energy of nonlinear four-wave in-
teraction (~i/t~ ) is much less than the energy of linear
modes.

In such a formulation the problem of destruction of
quantum localization of chaos by weak nonlinearity is

closely connected with the problem of propagation of
nonlinear waves in disordered systems (see a recent in-

teresting review [8]). However, while there the main

theoretical [8] and very recent experimental [9] eAorts
were devoted to the investigation of properties of the sta-
tionary transmission via a nonlinear layer and of the
properties of stationary solutions, here I will address
mainly the time-dependent problem of destruction of lo-
calized states.

Recently a few attempts [10,11] have been made to un-
derstand how nonlinear interaction manifests itself in the
domain of quantum chaos. The appearance of nonlinear
terms in the Schrodinger equation can arise as the result
of a mean field approximation for many body interactions
[10] or for waves as the result of propagation through
nonlinear media [11]. In the last case the wave propaga-
tion under quite general assumptions can be described by
the nonlinear Schrodinger equation (NSE). Sinusoidal
modulation of the waveguide boundary then leads, for
small aperture angles, to the kicked NSE model of wave
propagation [11]:
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p( y) y+kcosxi/t g 6(t —mT/2) .
t1 x m= —~

Here p and k are two parameters which measure the non-

linearity and the kick strength, respectively, we set 6 =1,
and the integrated probability ~i/t~ is the integral of
motion equal to 1. Motion is considered on a ring, so that
t/t(x, t) =i/t(x+2tt, t). The kicks occur with the period
T/2. The time variable plays the role of longitudinal
direction z along the waveguide. In the linear case
(P=0) this equation describes the kicked rotator model.
The periodic kicks lead to some energy excitation since
without them the energy of the NSE is an exact integral
of motion. Under excitation we will understand the
growth of the number hn of excited linear modes. For a
large value of hn the contribution from the nonlinear
term is relatively small. Let us mention that the non-
linear term in (1) is considered as a given one and we will

not discuss the conditions under which it is valid.
Numerical investigations carried out in [11] showed

that the nonlinear interaction in the model (1) does not
destroy the quantum suppression of classical diffusion in

the chaos region K =k T ) 1. The question as to the
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asymptotic law of excitation remained open, however.
For a better understanding of the process of excitation in

the kicked NSE model and general properties of the de-
struction of localization of chaos by nonlinear eAects, I
introduce a kicked nonlinear rotator (KNR) model. This
model is much simpler for numerical simulation than (1)
and allows us to understand the way in which nonlineari-

ty destroys localization. The dynamics of the model is

given by the following map:

A„=g ( —i )" J„(k)A exp( —i —,
' Tm'+i Ay ); (2)

The Bessel function J„— appears as the result of kick
which gives ft(x) =exp( —ikcosx)y. The Fourier har-
monics A„are connected with the wave function by the
relation y(x) =(I/42m)g„e'""A„. In fact (2) is practi-
cally the same map as for the kicked rotator but now the
change of the phase of Fourier harmonic A„between two
kicks depends on the amplitude of the harmonic. This
dependence is the same as for one harmonic in NSE when

y(x) =4 exp(inx)/J2z and P is small. Therefore, in this
case we have P = TP/4/r. It is natural to assume that such
a change of evolution between kicks will not change the
asymptotic law of spreading. Indeed, without kicks the
square width of the distribution cr=(An) remains ap-
proximately constant in both cases. In the presence of
kicks, transitions between harmonics due to the nonlinear
term in NSE are not of primary importance since such
transitions also take place in the KNR model (2) due to
the kick. Furthermore the type of nonlinearity is the
same in both models.

At first glance it seems that the nonlinear phase shift
Ag„ in (2) is not very important since for many excited
harmonics (levels) its value is small. Indeed, from the
normalization condition it follows that ~A„~ —I/An and

AP, =P~A„~ =P/An, where An is the width of the distri-
bution over unperturbed levels. Consequently the growth
of the width leads to a decrease of the nonlinear shift.
However, even a sma11 shift can change the nature of
motion leading to slow delocalization. This can be under-
stood on the basis of the Chirikov criterion of overlapping
resonances [12]. According to this criterion a chaotic
spreading takes place over the domain of overlapped reso-
nances. In the case of classical chaos K & 1 the average
distance between the resonances is Aro —1/An since all
quasienergies of linear problem (P =0) are homogeneous-
ly distributed in the interval (0,2x). On the other side,
the width of a resonance Bco is of the order of the non-
linear shift P~A„~ —P/An. Therefore, the overlapping
parameter S =Geo/Aro is of the order of P (S—P) and
chaotic spreading over all levels n will take place for P
larger than some critical value P, —1. Below the critical
value the initial distribution is always localized in n. In
the limit of very small P one enters in the Kolmogorov-
Arnol'd-Moser regime where the motion is integrable al-

most everywhere [13].
To obtain the law of spreading in the delocalized phase

it is convenient to use the basis of localized eigenstates
C of the linear case with P =0. For a larger An the non-
linear frequency shift in (2) is small and equations for
amplitudes of localized states can be written in the form

Cm
I

Bt
&m Cm +P g Vm, m ),m2, m3Cm( Cm2Cm3 I

m l, m2, m3
(3)

where y is some constant. It is interesting to note that in
fact the diA'usion rate D~ is given by the same expression
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FIG. I. The square width of the distribution over unper-
turbed levels a =ln ) in the KNR model (2) as a function of
time t measured in the number of kicks: k =5, T =1, P =1 (full
line). Initial state is n =0. Dots represent the data (taken from
[11],Fig. 4) for the kicked NSE model (1) with k =2.5, T =2,
P =10, and initial condition in the form of sollton. The straight
line is drawn simply to show the theoretical slope t

where the transformation between the unperturbed basis
and linear eigenstates is determined by A„=g R„C—I

~m, ml, m2, m3 ~n Rn, m Rn, m I Rn, m2Rn, m3 and &m

quasienergies of linear problems. Here and below t is

measured in the number of kicks.
In the regime of quantum localization of chaos the

values of R can be approximately represented as R„
=exp( —

~n
—m)/l —ig„)/Jl, where I =k /4 is the

linear localization length and g„are random phases.
This leads to the following estimate of the matrix ele-
ments V—1/l / . The total number of terms contributing
to the sum in (3) is of the order of l . All quasienergies
e are distributed in the interval (0,2x) so that the typi-
cal density of frequencies in (3) is p —l . From that we

find the rate of transition from a quasienergy level m to
other levels: I,—(PC V) p-P /(An), where we used
the relation C —1/An valid for An))l. Since during a
transition the change of m is of the order of / we find the
estimate for the diA'usion rate in n (in m it is the same):
(An) /Ar =Dp —I I,—l /j /(An) . This gives the fol-
lowing law of spreading over unperturbed levels in the
delocalized phase with P )P, :

(An ) 2 p4/5(4/sr 2/5
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FIG. 2. Probability distribution over unperturbed levels
W„=~A„~ in the KNR model (2) for parameters of Fig. 1 at
(=10 .

FIG. 3. The square width of the distribution over unper-
turbed levels o =in21 in the KNR model (2) as a function of
time t measured in the number of kicks: k =5, T =1, P=0.03.

as in the problem of the destruction of localization by
noise D —l /t, [14] but now the coherence time t, =I", '

is determined by the nonlinear interaction. Let us stress
that although h, n grows unlimitedly the rate of growth is
much slower than the classical diffusion rate (An) = 2lt.
In this sense the suppression of chaos by quantum in-
terference is not completely destroyed. [However, the
soliton solution of (1) is destroyed in this delocalized
phase. ]

The results of numerical investigations of the KNR
model (2) are presented in Figs. 1 and 2. From Fig. 1 we
see that the spreading continues during 10 million kicks
and the power law of dependence on time is in good
agreement with the theoretical expression (4). The exci-
tation in the kicked NSE model is also in agreement with
(4). However, here the interaction time is much shorter
and further more careful checks are required. The two
cases presented in Fig. 1 give approximately the same
value of the constant @=3 in (4). The distribution of
probability over unperturbed levels in model (2) present-
ed in Fig. 2 shows a tendency to form a Oat plateau in the
center around the initially excited level. The size of the
plateau grows with time according to the law (4). Let us

note that the distribution is not exactly symmetric with
respect to the change n —n due to exponential growth
of roundoA errors in the chaotic delocalized phase.

An absolutely diferent type of behavior takes place in

the localized phase p & p, (Figs. 3 and 4). Here the
width of the distribution remains finite and the probabili-
ty distribution is exponentially localized over unperturbed
basis. Therefore, in this case nonlinearity is too weak and
it does not destroy quantum localization. According to
the numerical data the value of P, is of the order of 0. 1.
However, it is di%cult to find its exact value due to slow
growth of h, n in the delocalized phase.

It is interesting to make a few remarks about the local
stability of motion in the KNR model. For p«p, the
motion is integrable practically every~here except in ex-
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FIG. 4. The same as Fig. 2 for parameters of Fig. 3.

ponentially narrow chaotic layers. Therefore the Lya-
punov exponent is zero and motion is locally stable. For
p & p, the motion is chaotic and the Lyapunov exponent
I, is of the order of the width of the resonance &u —p/An.
Since dn increases quite slowly, the exponential local in-
stability for nearest trajectories takes place for relatively
short time intervals (which may, however, contain many
kicks). This explains the observation of practical irrever-
sibility in time in [11]. However, asymptotically in time
An grows according to (4), the distance between nearby
trajectories grows like exp(at ' ), and the Lyapunov ex-
ponent is formally equal to zero (a & 0 is some constant).

Another interesting question is about a type of excita-
tion in the classically integrable regime A =kT & 1. Nu-
merical simulation shows that the transition to this re-
gime leads to a sharp decrease of the excitation. For ex-
ample, for the case of Fig. 1 the decrease of T up to 0.08
(with other parameters being the same, K=0.4) gives a
value of (An) at t =10 that is 20 times smaller than
that in Fig. 1. The dependence of (An) on time can be
approximated by the power law t . In fact, the dis-
cussed regime corresponds to a regime ~here the quan-
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turn tunneling between classical islands of stability is
efTected by nonlinear interaction. In some sense this case
resembles the situation considered in [10]. However, now
that the chain of islands (resonances) is infinite this can
lead to an infinite spreading. Further investigations are
required for this regime.

In summary, it was demonstrated how and under what
conditions quantum localization of chaos is destroyed by
weak nonlinearity. Such an eAect can arise in the propa-
gation of waves through nonlinear disordered media.
Since the type of nonlinearity in these systems is usually
the same as in the nonlinear Schrodinger equation [and
as in the introduced KNR model (2)], it implies that the
obtained results are quite universal. For example, the ex-
istence of high-order nonlinear corrections to NSE (e.g. ,

~y~ ) will not change the law of excitation (4). Equation
(4) gives the asymptotic law of spreading in the regime
where the soliton is completely destroyed.

As a result of the similarity between the localization of
quantum chaos and Anderson localization the same type
of behavior will take place in the Anderson model with
nonlinear interaction:

. ~Pn =&n Pn Pl gn I Pn + tltn+ j + Pn —] ~

~here E„are randomly distributed in the interval
( —W, W) with W( 1. For the model (5) the above ar-
guments based on the overlapping of resonances work in

the same way giving the same estimate for P, and the
same law of spreading (4) in the delocalized phase. The
same type of arguments can be also applied for higher di-
mensions in the localized regime with localization length
l & 1. Here it is necessary to mention the situation when
the random potential changes smoothly compared to the
size of the soliton. In this case the lifetime of the soliton
can be quite large (but always finite), which can give
eAective propagation along the chain. However, after the
destruction of the soliton the spreading (excitation) is
given by the law (4). If the potential changes sharply on
a distance comparable with the soliton size then the soli-
ton lifetime is small (as for the case of Fig. 1) and the re-
gime (4) starts immediately.

The obtained results, contrarily to the experiments [9],
show that the localization is destroyed by nonlinearity for

a coupling strength exceeding a critical value. This
discrepancy is probably connected with the significantly
nonlocal character of the nonlinear interaction in the ex-
perimental system [9]. It will be interesting to make ex-
periments on the destruction of Anderson localization by
weak local nonlinear interaction.
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