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Stress-Energy Tensor of Quantized Scalar Fields in Static Black Hole Spacetimes
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We present a method for the numerical computation of the stress-energy tensor of a quantized scalar
field in a general static spherically symmetric spacetime, with or without horizon. The scalar field may
have arbitrary curvature coupling and mass. Our method leads in a natural way to a new analytic ap-
proximation to the stress-energy tensor for massless scalar fields in these spacetirnes. We use the results
to compute stress-energy tensors of quantized scalar fields in Schwarzschild and Reissner-Nordstrpm
black hole spacetimes.
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The discovery by Hawking [1] that black holes emit ra-
diation in a thermal state showed that quantum fields
have a profound efrect on black hole spacetimes. This
discovery placed black hole thermodynamics on a firm
foundation; it also led to the conclusion that black holes
in isolation (not surrounded by a heat bath) will evolve

by evaporation, dwindling until they become objects of
such size and mass that quantum gravity is required to
adequately describe them.

Early calculations of black hole radiance proceeded by
studying the scattering of waves (the modes of the quan-
tized field) in the fixed background spacetime. This ap-
proach allows one to obtain information about particle
production. However, it does not give information about
vacuum polarization efrects nor does it tell one how the
spacetime geometry near a black hole is changed by the
stress energy of the quantum fields. The latter is espe-
cially important because the thermodynamic properties
and evolutionary history of a black hole are determined
by its spacetime geometry.

One way to obtain more information about quantum
eA'ects is to compute the stress-energy tensor of the quan-
tized field, (T„„). Knowledge of (T„,) gives information
on vacuum polarization and particle production in a
manner independent of any particular choice of mode
decomposition, unlike, e.g. , the particle number operator.
Further, if (T„„)can be computed for a general class of
spacetimes then the semiclassical backreaction equations

6„,=8~(T„,)

can be solved for that class of spacetimes.
In this Letter we present a numerical method which al-

lows for the computation of (T„,) for a quantized scalar
field with arbitrary mass and curvature coupling in a gen-
eral static spherically symmetric spacetime. Included in

this class of spacetimes are the Schwarzschild and
Reissner-Nordstrgm spacetimes which describe static un-

charged and charged black holes, respectively. A similar
method of calculating the vacuum polarization, (P ), in a

general static spherical spacetimes, was presented in Ref.
[2]. The fact that (T„,) can now be computed in these
spacetimes will make it possible to obtain static spherical-
ly symmetric solutions to the semiclassical backreaction
equations. Such solutions will give substantial insight
into the question of how quantum eA'ects distort the
spacetime geometry near a static black hole which is in

thermal equilibrium with its surroundings. They will also
provide self-consistent equilibria for the study of black
hole thermodynamics.

Because of the difticulty involved in numerically com-
puting (T„„) it is often useful to approximate it analyti-
cally. For conformally coupled massless scalar fields,
such approximations have previously been derived by
Page [3] for Schwarzschild spacetime and by Frolov and
Zel'nikov [4] for a general static spacetime. We present
here an analytic approximation for (T„,) for a massless
scalar field with arbitrary curvature coupling in a general
static spherically symmetric spacetime. This new approx-
imation is obtained in a natural fashion from our ap-
proach to the full numerical calculation of (T„,). For the
particular case of conformal coupling the approximation
reduces to that of Frolov and Zel'nikov. It is therefore
equivalent to Page's approximation for a conformally
coupled massless scalar field in Schwarzschild spacetime.
The derivation of our approximation is based solely on

quantum field theory. The original derivation of Frolov
and Zel'nikov's approximation was based on geometrical
concerns. Our derivation provides the first justification
for their approximation from the viewpoint of quantum
field theory.

We have used our numerical method to compute the
stress-energy tensor for quantized scalar fields in the
Hartle-Hawking state in Schwarzschild and Reissner-
Nordstrgm black hole spacetimes. Computations have
been carried out for both the massless and massive scalar
field with arbitrary curvature couplings. In this Letter we

present results for massless fields; our results for massive
fields will be presented elsewhere. These are the first nu-
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merical calculations of (T„,) for massive scalar fields and
for noncon formally coupled massless scalar fields in

Schwarzschild spacetime. Previous calculations of (T„,)
for scalar fields in the Schwarzschild black hole space-
time by Fawcett [5] and by Howard and Candelas [6]
have been limited to the special case of a massless confor-
mally coupled field. The vacuum stress energy has also
been computed for the electromagnetic field in Schwarzs-
child spacetime by Jensen and Ottewill [7]. No numeri-
cal computations of the vacuum stress-energy tensor have
previously been done for any quantized fields in Reiss-
ner-Nordstrgm spacetimes.

The rest of this Letter proceeds as follows: We begin
by deriving an exact expression for the stress-energy ten-
sor of a quantized scalar field with arbitrary mass and
curvature coupling in a general static spherically sym-
metric spacetime. Both the zero and nonzero tempera-
ture cases are considered. The resulting expression con-
sists of two parts: an analytic portion which becomes our
new approximation, and a mode sum which must be com-
puted numerically. We next examine and compare the
numerical and approximate expressions for (T„,) for
massless fields in the Schwarzschild and Reissner-Nord-
strgm spacetimes. Complete details of the derivation of

both the exact and approximate expressions for the
stress-energy tensor, a similar approximation scheme for
the vacuum polarization, (p ), and numerical results for
massive scalar fields will appear in a separate paper.

The numerical computation of the quantum stress-
energy tensor proceeds in much the same manner as that
of Howard and Candelas' [6] calculation of (T„„) for
massless conformally coupled scalar fields in Schwarzs-
child spacetime. As in their calculation, a Euclidean
space approach is used. The metric for a general static
spherically symmetric spacetime when analytically con-
tinued into Euclidean space is [8]

ds =f(r)dz +h(r)dr +r d0 +r sin Odp . (2)

Here f and h are arbitrary functions of r which, if the
space is asymptotically flat, become constant in the limit
as r approaches infinity.

(T„,) is computed using the method of point splitting
[9]. One begins by noting that (T„,) can be obtained by
taking derivatives of the quantity (p(x)p(x')) and then
letting x' x. The calculation is simplified by noting
that in the limit x' x, (p(x)p(x')) =GE(x,x'), where

GE is the Euclidean space Green function. In Ref. [2] it
was shown that for the metric of Eq. (1) GE(x,x') is

given by
OO

G~(x, x') = dpe'" ' ' g (21+1)Pt(cosy)C„tp t(r &)q„t(r & ),
I=O

where

(3)

Here Pt is a Legendre polynomial, cosy—=cos&cosO'+sin&sinO'cos(p —p'), C t is a normalization constant, r & (r &) is
the greater (lesser) of r and r', T is the temperature of the field, and co =2tznT if T&0. The modes p t and q t obey the
equation

1 d5+ 2+ I df+ I dh dS
h dr2 rh 2fh dr 2h dr dr

+ + +(R S=Of 2
(4)

The vacuum expectation value of the stress-energy tensor is given by the equation

(Tpv) I™l( 2 4) (gp GEa'v+ gv GE pa') + 2(( 4 )gpvGEa ((GE pv+ gp gv GEa'ti') + 2(gpv(rrt +4R )GE

+((Rpv —
P gpvR)GF —

2 m gpvGE] . (5)

Substituting Eq. (3) into Eq. (5) results in an unrenormalized expression for (T„,) This expression is reno. rmalized by
subtracting oA' the point-splitting counterterms obtained by Christensen using the DeWitt-Schwinger expansion [9]. For
computational purposes we find it helpful to write the renormalized expression for (T„,) in the following schematic form:

(Tpv)ren lim ((Tpv)unren (Tpv)WKB) + ((Tpv)WKB (Tpv)WKBdiv) + ((Tpv)WKBdiv (Tpv)DS)
X ~X

( Tp v) modes + ( Tp v) W K Bfin + ( Tp v) analytic ~ (6)

The procedure we use to compute the various terms in Eq. (6) is to split the points along the t direction and define
& =t —t . Then (T„,)„„„,„ is computed using numerical solutions to the mode equation (4). (Tp, )WKB is computed by us-
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ing the WKB approximation for the modes. This approx-
imation has been outlined in detail in Ref. [2]. If at least
a fourth order WKB expansion is used for the modes,
then (T„,) ~„consists of finite sums and integrals over
the modes. The higher the order used, the more rapidly
the sums and integrals converge. We use a sixth order
expansion for massive fields and an eighth order expan-
sion for massless fields.

(T„,)wxad;„ is computed by first computing the sums
over l in (T„,)wxa in the large ro limit. This results in an
asymptotic expansion of (T„,)wxa in inverse powers of co.
The expansion is truncated at order co '. The sums or
integrals over cu include co =0. Thus it is necessary to im-
pose an infrared cutoA on those sums or integrals con-
taining terms which are of order co . Since (T&v)wKBdiv
is both added and subtracted in Eq. (6), it is clear the
(T„„)„„is independent of the value of this cutoff. All of
the ultraviolet divergences in (T„,)wy. a are contained in

(T&~)wxad~v. We compute (T„,)wxas„numerically be-
cause the sums and integrals are too complicated to be
analytically computable.

(T„I/)Qf\Q]yg, c is computed by first computing the sums or
integrals over co in (T&v)wvad;, with ea0. Then g,p is ex-
panded in powers of e as are the terms in the point-
splitting counterterms (T„„)Ds. The difference is comput-
ed and then the limit t 0 is taken. Howard and
Candelas [6] and Jensen and Ottewill [7] have derived
analytic contributions to (T„,)„„in this way for the con-
formally invariant scalar field and the electromagnetic
field, respectively, in Schwarzschild spacetime.

The result contains a logarithmic term originating from
(T„,)os. For a massless scalar field this term contains an
arbitrary constant [9]. This constant represents an ambi-
guity in the way in which the limit m 0 is computed
for the renormalization counterterms. Such a term al-
ways appears for a massless field. Its existence is not a
problem because its coefficient is proportional to the vari-
ation of the combination of a Weyl tensor squared term
and a scalar curvature squared term in the gravitational

!
Lagrangian. Thus a particular choice of value for the ar-

bitrary constant corresponds to a finite renormalization of
the coefficients of these terms in the gravitational La-
grangian. As such, the value of this constant must be
fixed by experiment or observation.

For a massless scalar field, (T„,),,„,, ~y&„can be used by
itself as an approximation for (T„,)„,„. However, for it to
be a useful approximation the dependence on the infrared
cutoff in (T„„)wKad;„must first be removed. We accom-
plish this by absorbing the cutoA' into the definition of the
arbitrary constant mentioned above. The result is an ap-
proximate stress-energy tensor which is conserved and
which, for the conformally invariant scalar field, has a
trace equal to the trace anomaly.

We find that for the special case of conformal coupling,
g= —,', (T„,),, „,, )yi is equivalent to the approximation of
Frolov and Zel'nikov [4] if the arbitrary constants q2
and q~ in their expression for (T„,) are set equal to
zero. Their arbitrary constant q~ is related to the arbi-
trary constant discussed above. As a result, our approxi-
mation duplicates (for conformal coupling) Huang's re-
sults for the Frolov-Zel nikov approximation in Reissner-
Nordstrgm spacetimes [10] and is also equivalent to
Page's approximation [3] for the stress-energy tensor of a
conformally coupled scalar field in any static spherically
symmetric Einstein spacetime.

Expressions for the components of (Tp ) ]yi in a gen-
eral static spherically symmetric spacetime are too long
to be shown here. In a Reissner-Nordstrgm spacetime,
the expressions simplify considerably. We display one
component of (T„,),. „,. ~y&,, below. Before doing so, it is
useful to note that for Reissner-Nordstrgm spacetimes,
the scalar curvature R is zero. Examination of Eqs.
(3)-(5) shows that, in this case, the stress-energy tensor
(exact or approximate) is a linear function of the curva-
ture coupling g. It can thus be written in the following
form:

(7.„,) =C„,+(g ——,
' )D„,. (7)

For a Reissner-Nordstrgm black hole of mass M and
charge Q we find

(Ce ), =(2880n r 5 ) '[2rc r' —32Q r —8M r +244MQ r +24M r —
141Q "r —580M Q r —18M r

+636MQ r +440M Q r —174Q r —700M Q r +376MQ r —67Q ]

Q 5 C+ 1
1

hp
0&2& 8 2 4I. 2 (8)

(De ), =(48yr r~A ) '(2x Mr —3x Q r +x Q r +16Q r —16M r —54MQ r +54M r +21Q r

+27M Q r —48M r —40MQ r+40M Q r+9Q —9M Q ), (9)
where d =r —2Mr+ Q, x is the surface gravity of the black hole, C is Euler's constant, and p is the arbitrary constant
discussed above.

Frolov and Zel'nikov [4] have shown that their approximate stress-energy tensor for a conformally invariant field
diverges on the event horizon of a static charged black hole. The divergence occurs regardless of how small the charge
is, so long as it is nonzero. Our more general analytical approximation shows that this divergence also occurs for non-
conformally coupled massless scalar fields, independent of the value of g. Whether this divergence is real or simply an
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FIG. 1. The curves in this figure display the values of (T& )
for a quantized scalar field around a Schwarzschild black hole
with ( =0, —,', —,

' from top to bottom at the event horizon,
r =2M. The solid curves are the results of our numerical calcu-
lations; the dashed curves show the analytical approximation.
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FIG. 2. The curves in this figure display the values of (Tz )
for a conformally coupled field around a Reissner-Nordstrpm
black hole with ~Q~/M =0.99,0.8,0 from top to bottom at the
event horizon, r =r+.

artifact of the approximation is as yet unknown. Our nu-
merical results appear to indicate that the divergence is

an artifact of the approximation, but it is difficult to be
certain since we cannot rigorously demonstrate that the
quantity ((T„")—(T, '))/ (r —r+) is finite in the limit that
r r+. Numerically calculated values for the stress ten-
sor components, accurately known to only a finite number
of digits, are never sufficient to prove the regularity of the
stress-energy tensor on the horizon.

We have numerically computed the stress-energy ten-
sor for quantized scalar fields in Schwarzschild and
Reissner-Nordstrgm spacetimes. Some of our results
for massless scalar fields are shown in Figs. 1 and 2.
We have set the arbitrary constant p equal to I. In
Fig. I we show (Te ) for quantized scalar fields in the
Schwarzschild spacetime with g =0, 6, 4 . The solid lines
are the full numerical values, while the dashed lines are
the new approximation. In Fig. 2 we show (Te ) for a
conformal scalar field in the Reissner-Nordstrgm space-
times with ~Q~/M =0,0.8,0.99, where Q is the charge of
the black hole and M is its mass. The event horizon is at
r =r+ =M+(M —

Q ) '

As can be seen from Fig. l, the accuracy of the analyti-
cal approximation does not depend strongly upon the
value of g. We find that the analytical approximation
works best for small values of ~Q~/M. It works rather
poorly near the event horizon for ~Q ~/M = l.

The numerically calculated value of (Te ) for the con-
formally coupled field at the event horizon rises as Q /M
is increased, reaches a finite maximum when Q /M

=0.98, and then decreases as the extremal case (Q 2

=M ) is approached. Similar behavior was found for
the vacuum polarization (p ) [2].
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