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Application of Finite Size Scaling to Monte Carlo Simulations
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A new application of finite size scaling to Monte Carlo simulations is introduced. Using this
technique, critical behavior can be investigated at temperatures arbitrarily close to the critical point
without large lattice sizes. Applying this method to the two-dimensional standard O(3) model
it is shown that for the correlation length asymptotic scaling holds for P & 2.25; the magnetic
susceptibility converges to the asymptotic scaling very slowly. In the scaling region, it is observed
that the specific heat decreases with P, which implies no singular behavior of the specific heat for
this model.

PACS numbers: 02.70.—c, 12.38.Gc, 64.60.—i

Monte Carlo simulations have been widely used for the
studies of critical phenomena. The main idea behind
these methods is to measure the thermodynamic values
of a certain physical quantity in the scaling region and
then to fit the data to a certain scaling function. The cru-
cial difIiculty here is that, without an exact solution of
the model, the scaling region cannot be determined pre-
cisely; in other words, it is impossible to predict at what
range of the temperature the data can be ideally Btted to
an appropriate scaling function. To avoid this ambiguity,
measurements must be done arbitrarily close to the criti-
cal point. The cost is that the size of the lattice must be
extremely large to obtain proper thermodynamic data.
The series expansion method has the same difFiculty: it
is impossible to decide how many expansion terms are
needed for the proper determination of critical behavior.
Because of this difIiculty, often, the less singular terms
are included in the leading scaling function in order to fit
the data obtained at temperatures not sufFiciently close
to the critical point. However, this procedure usually
makes the fittings highly unstable.

To overcome such difFiculties, various methods such
as finite size scaling (FSS) and the Monte Carlo renor-
malization group (MCRG) method have been developed.
However, it turns out that the standard usage of these
methods still requires large lattice sizes [1].

Our technique is based on the observation that finite
size efI'ects of any thermodynamic quantities on a finite

lattice of linear size L depend only on L/(, where (
is the bulk (thermodynamic) correlation length. More
precisely, for a typical thermodynamic quantity P,

= f~(*(t)) ~(t) =-Pl. (t)
P~ t ~ t

where t, PI„P, and fI are the reduced temperature
(T —T,)/T„ the value of P on a lattice of linear size I,
the thermodynamic value of P, and a function depending
on P, respectively.

Equation (1) was initially suggested by Brezin [2], and
using the analyticity property of PL, (t) it was shown [3]
that if P has a power critical behavior, P (t) t ~ with
p ) 0, from Eq. (1),

Pl. (t) = L (pp+ piL t+ p2L t + )

follows for small values of t, where po, pi, . . . are constants
depending on P. It is obvious that Eq. (2) implies the
usual FSS at t = 0, PI, (t = 0) L~~, and that it implies
T, (L) T, 1/L t, con—sidering Eq. (2) up to the second
order of t [T,(L) is the fi ctitious critical point on the finite
lattice at which PL, (t) has its maximum value]. So far we
have shown that Eq. (1) is consistent with the results of
I SS in the absence of the magnetic Beld, and we stress
that various analytical methods[4] have proved that FSS
is exact for D ( 4, suggesting that Eq. (1) is also exact
for D(4.
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The relation (1) is significant in that, by fixing x(t)
as a constant, obtaining Pr, (t) is sufhcient for the de-
termination of the critical behavior of I . In order for
the x(P) P is the inverse temperature —to be fixed, esti-
mates of P, and v are needed in advance. However, once
they are given it can be easily checked whether the esti-
mates are correct or not using Eq. (1): if the values of v
are underestimated or P, are overestimated compared to
the exact values, Q, (P)/( (P) will increase as P grows
up to P„and vice versa. For the exact values of v and

P„(L,(P)/(~(P) will remain constant, and other criti-
cal exponents can be determined from measurements at
small lattices since these values are proportional to their
thermodynamic values.

From the above procedures, it is clear that with a suf-
ficiently small value of 2;, measurements can be done at
temperatures as close to the critical point as desired while
keeping the sizes of the lattice small, and at these tem-
peratures the less singular corrections to the leading sin-
gularity can be safely ignored.

Consequently, besides the indirect justification
through the FSS, for a model whose exact value of v
and P, are known the validity of the relation (1) can be
tested using numerical measurements. In the following,
we present the numerics which confirm Eq. (1) for the
2D Ising model. From now on, for the bulk quantities the
proportionality constants appearing in the scaling func-
tions will be ignored for the sake of simplicity. For ex-
ample, ( (P) = [P, —P[, and x(P):—L/( (P). For
the 2D Ising model, four arbitrarily small values of x
(10 i, 10 2, 2 x 10 s, and 2 x 10 s) were tried, and for
each x, (I, and gr, were measured. Our measurements
are summarized in Table I, and leave no doubt of the

exp(2rrP) exp(4vrP)
oo

p
r goo p4 (3)

where our convention of ignoring the proportionality con-
stant is used.

Since the nonperturbative proof of AS is crucial to
the validity of QCD, considerable amounts of numerical
work to show AS have been conducted [7]. However, all
the work up to P=2.05, where the corresponding ( is
nearly 300 in lattice units, failed to show AS [8]. Finally,
using an improved MCRG, Hasenfratz and Niedermayer
[9] reported agreement with AS for the mass gap (i.e. ,

the inverse of the correlation length) at P = 2.26. On
the other hand, the validity of perturbative calculations
in non-Abelian theories was questioned, and Patrascioiu
and Seiler [10] suspect that a new phase transition may
take place in these models. An argument based on the
renormalization group recursion formula also appeared
[ll], supporting Patrascioiu and Seiler.

At /=2. 26, the value of ( is at least of the order
of 10, which makes the computer time needed to ob-
tain the proper thermodynamic data prohibitive; conse-
quently, our method is ideally suited to this model. We
have simulated the standard 2D O(3) model for the vari-

validity of (1).
Our technique can be applied to the 2D standard, near-

est neighbor, O(3) model as well. It is well known that
this model shares a couple of the important properties
of the 4D QCD [5], such as asymptotic freedom and the
existence of the instantons. Using perturbation theory
for P suKciently large, the universal scaling law [referred
to as the asymptotic scaling (AS)] of correlation length
and magnetic susceptibility were derived [5, 6]; namely,

TABLE I. The result of the 2D Ising model for the various x values. As shown below for

P ) 0.4369, y t and ( t become exact within the characteristic statistical errors
(0.3%%uo) of our numerical tests. For both (r, and gr„ it is clearly shown that they are proportional
to their thermodynamic values.

x
10

10

2x10 '

0.4323534610
0.4369830900
0.4391483320

0.4401312380
0.4402867935
0.4403742935
0.4404867935
0.4405569234

0.4405201268
0.4406242935
0.4406467935
0,4406590157

0.440685126844
0.440686052769
0.440686485817

L
18
27
65

18
25
32
50
77

12
32
50
72

12
27
65

(r.
9.38(6)
21.00(9)
50.58(22)

16.07(5)
22.25(6)
28.67(9)

44.57(13)
68.50(22)

10.94(5)
28.96(10)
45.34(15)
65.02(26)

10.91(6)
24.47(12)
59.08(32)

$r. /E,

0.782(5)E-01
0.778(3)E-01
0.778(3)E-01

0.893(3)E-02
0.890(2)E-02
0.894(3)E-02
0.891(3)E-02
0.890(3)E-02

0.182(1)E-02
0.181(l)E-02
0.181(1)E-02
0.181(1)E-02

0.182(l)E-04
0.181(l)E-04
0.182(1)E-04

76.0(2)
312.2(8)
1453(4)

169.6(3)
301.4(4)
465.3(7)

1015.3(17)
2160.0(98)

84.3(2)
469.1(3)

1025.4(31)
1939.0(95)

84.1(2)
348.8(7)
1620(4)

Xr. /X
0.175(0)E-01
0.174(0)E-01
0.174(0)E-01

0.341(1)E-03
0.341(0)E-03
0.342(1)E-03
0.342 (1)E-03
0.341(2)E-03

0.206(0)E-04
0.206(0)E-04
0.207(1)E-04
0.206(1)E-04

0.650(l)E-08
0.652(l)E-08
0.651(2)E-08
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TABLE II. The result of the 2D O(3) model. For 1.151 & P & 1.395, (r, /( is decreasing, which indicates that correlation
length scales slower than AS in this range of P; it is the case for the magnetic susceptibility also. In the intermediate range
of P, they scale faster than AS. For 2.23 & P, it is clearly seen that correlation length converges to AS, while the magnetic
susceptibility seems to converge to AS much more slowly than the correlation length. Note that the specific heat per link (C„)
in this range of P, which is proportional to its thermodynamic value, is decreasing.

10

10

2x10 '

2x10

1 .1507712900
1.3182253200
1 .3952986700

1.6057803200
1.7907457800
1.8922447700

2.2463085984
2.3810679912
2.5090853592
2.6284991888

2.7069989050
2.7932937450
2,9183470800

L
12
30
46

15
43
77

30
66
128
283

18
30
63

(r,
2.70(1)
4.88(2)
6.71(3)
8.18(2)
23.57(4)

42.66(16)

23.42(4)
51.61(8)

109.64(27)
222.05(57)

17.07(3)
28.49(5)
59.84(6)

4/(
0.225(0)E-02
0.163(1)E-02
0.146(1)E-02

0.546(1)E-03
0.548(1)E-03
0.554(2)E-03

0.390(1)E-04
0.391(l)E-04
0.392(1)E-04
0.392(1)E-04

0.190(0)E-05
0.190(0)E-05
0.190(0)E-05

XL
16.7(0)
44.3(l)
75.8(3)
82.1(1)

524.7(4)
1501.6(15)

432.(2)
1846.(2)
7441(16)
27574(68)

201.9(1)
524.6(2)

2110.9(1)

xi/x
0.153(0)E-04
0.855(2)E-05
0.698(2)E-05

0.940(1)E-06
0.910(1)E-06
0.907(1)E-06

0.605 (0)E-08
0.601(1)E-08
0.597(1)E-08
0.595(1)E-08

0.183(0)E-10
0.182(0)E-10
0.181(0)E-10

C
0.658(2)
0.780(6)
0.819(7)

0.747(6)
0.696(4)
0.663(4)

0.604(6)
0.592(7)
0.582(8)
0.574(6)

0.571(4)
0.570(2)
0.566(3)

ous ranges of P (see Table II) employing the one-cluster-
type Monte Carlo algorithm [12]. The correlation length
was measured based on the second moment calculation
[13]. That is,

where

(4)

) s(x, y)e
2:,y

(5)

The numerics for P & 2.25 show that for the correlation
length AS becomes exact, while magnetic susceptibility
converges to AS much slower than the correlation length.
It thus appears that the existence of a new phase transi-
tion is unlikely. One very unusual and interesting scaling
behavior is also observed: the specific heat; decreases as
the P, is approached in this scaling region, meaning that
the specific heat is nonsingular for all the values of P for
this model.

Repeating the same procedure, it is shown that for
1.151 & P & 1.395, both the correlation length and the
magnetic susceptibility scale slower than AS, whereas in
the intermediate range, 1.606 & P & 1.892, they scale
faster than AS. Hence, the existence of the crossover is
obvious, which is consistent with the previous numerical
results [7].

In this work, no special efforts were made to locate the
exact point from which AS become exact, or at which
the crossover occurs. However, detailed numerical re-
sults will be available soon. Currently, I am applying this
technique to the investigation of the critical behaviors of
the 2D ferromagnetic Ising model where one of the two
different and positive values of the coupling constants is

realized randomly from link to link. A crucial question
regarding this system is whether the critical index such as
p and v changes from those values of the pure (uniformly
coupled) system or multiplicative logarithmic correction
to the critical behaviors of the pure system exists. It is
a notoriously difFicult task to distinguish numerically a
power critical behavior with a small change in the critical
exponent from a logarithmic correction, and vice versa,
because the clear difference between the two can be visi-
ble only at the points extremely close to the critical point.
Since this system is self-dual with certain realizations of
the randomness this technique can be easily applied to
test the logarithmic correction; current preliminary data
seem to show that the correlation length of this system
scales according to the multiplicative logarithmic correc-
tion that was predicted by a renormalization group equa-
tion technique [14]. The details along with the results of
different realizations of the randomness will be published
elsewhere.

I am grateful to Doug Toussaint for his help in mak-
ing the O(3) code, to Adrian Patrascioiu for bringing
the asymptotic scaling problem to my attention, and to
Robert Thews for his hospitality. The numerical compu-
tations were made on the CONVEX C240 and IBM 3090
300E at the University of Arizona, and this work was
supported in part by the Department of Energy (Grant
No. DE-FG02-85ER40213).
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