Interlayer Tunneling Model for the c-Axis Resistivity in High-Temperature Superconductors

K. E. Gray and D. H. Kim

Materials Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 1 October 1992)

The c-axis resistivity of $Bi_2Sr_2CaCu_2O_x$ single crystals shows a magnetic-field-dependent peak below the zero-field T_c . We find good agreement with the temperature and field dependence of the peak, by modeling the c-axis conduction as a series stack of Josephson tunnel junctions. For intermediate values of the Josephson coupling, we predict such a peak and verify it by measurements on discreet, thin-film Josephson junctions. The exaggerated effects in $Bi_2Sr_2CaCu_2O_x$ result from its unusually large energy gap and fluctuations.

PACS numbers: 74.40.+k, 74.50.+r, 74.60.Ge

Knowledge of the c-axis transport in high- T_c superconductors (HTS) is essential for a complete understanding of the electronic states involved, and their c-axis coherency, which has implications for theory [1] and experiment [2,3]. Recent measurements of the c-axis resistivity ρ_c in Bi₂Sr₂CaCu₂O_x single crystals show [4] a magnetic-field-dependent peak near the zero-field transition T_c for fields H parallel to the c axis, which has been confirmed by later studies [5]. Previous attempts to explain the field-dependent transition at low temperatures T by one-dimensional (1D) phase slippage [4] or by fluctuation effects [6] gave no explanation of the empirical normal-state "semiconducting" behavior.

We propose a *single* explanation for *both* the low-T, H-dependent transition and the high-T, H-independent normal-state semiconducting behavior by considering the c-axis conduction to be that of a series stack of Josephson tunnel junctions between well-coupled units consisting of superconducting Cu-O bilayers. Because of the large number of junctions along the c axis, each one is at its zero-bias resistance R_0 for practical bias voltages. As T decreases below T_c , tunneling theory predicts an increasing R_0 for Giaever junctions [7], with low values of the Josephson coupling parameter γ , while for large γ , R_0 decreases due to Josephson coupling [8-10]. For intermediate values of γ , we propose a model combining these effects, which displays a peak in R_0 below T_c , and verify it with data on discreet, thin-film junctions. We find that the relatively stronger semiconducting behavior of ρ_c in $Bi_2Sr_2CaCu_2O_x$, extending to T well above T_c , requires, in addition, unusually large fluctuations [6,11,12] and energy gap Δ [13-15]. Using 2D fluctuations, calculated [12] beyond the Gaussian approximation, and Δ measured by tunneling [13-15], we find good agreement with the measured $\rho_c(T,H)$. As an *independent* check of this model, the fitting parameter γ predicts [8,9,16] a normal-state, c-axis resistivity, ρ_{cN} , which is close to the measured one.

Consider a single Josephson junction: the important parameter, γ , is the ratio of the Josephson coupling energy to k_BT , given by [10]

$$\gamma(T) \equiv \frac{\hbar I_c(T)}{ek_B T} = \frac{\pi \hbar \Delta(T)}{2e^2 R_N k_B T} \tanh\left\{\frac{\Delta(T)}{2k_B T}\right\},\qquad(1)$$

where $I_{c}(T)$ is the Josephson critical current in the absence of fluctuations and R_N is the normal-state junction resistance. Note that both I_c and R_N are extrinsic, depending not only on the electron transmissivity but also the effective junction area. Here $\gamma_0 \equiv \hbar I_c(0)/ek_B T_c$ is appropriate for comparing junctions, and, for large R_N , $\gamma_0 \ll 1$, so Josephson coupling can be neglected at all T: then the junction resistance is solely due to quasiparticle tunneling and for low bias voltages, $V \ll \Delta$, it increases [7] with decreasing T as $\sim \exp[\Delta(T)/k_BT]$, since the quasiparticles are frozen out with the establishment of the gap. The quasiparticle conductance for two identical superconducting electrodes, $Y_{SS}(T)$, is given analytically in Taylor's thesis [17], and at T_c equals the normal-state conductance, $Y_N \equiv 1/R_N$. For $\gamma \gg 1$, the pair conductance shorts out the quasiparticle resistance, but true zero resistance only occurs asymptotically at T = 0 as $\gamma(T)$ goes to infinity, since otherwise fluctuations in the phase difference across the junction lead to a finite voltage [10]. The conductance Y_{RSJ} for a resistively shunted junction is given by [10]

$$Y_{RSI}(T) = Y_N I_0^2(\gamma(T)/2), \qquad (2)$$

where I_0 is the modified Bessel function.

For the presently interesting case of $\gamma \sim 1$, we suggest that the total conductance of an *unshunted* junction is the sum of the quasiparticle and pair conductances, Y_{SS} and Y_p , the latter obtained by subtracting the shunt conductance, Y_N , from Eq. (2), i.e.,

$$Y_p(T) = Y_N \{ I_0^2(\gamma(T)/2) - 1 \}.$$
(3)

Thus as γ_0 increases, there is a smooth progression in the T dependence of R_0 from a purely decreasing function to a purely increasing function, but for $\gamma_0 \sim 1$, this model predicts a distinct peak in $Y_N = Y_{SS} + Y_p$ below T_c .

To verify this model, data on discreet Josephson junctions using two thin-film, Al electrodes are shown in Fig.

© 1993 The American Physical Society

1693

1 together with fits based on this model and a BCS dependence for $\Delta(T)$, which is verified to high precision in *these* junctions. Thus the only adjustable parameter is γ_0 , and these are shown for each curve. Note that the occurrence of this peak has also been recognized [18] in the transport resistance of Josephson-coupled granular superconductors.

From Eq. (1), one expects $\gamma_0 \propto 1/R_N$. However, as already noted even for small ($\sim 100 \ \mu m^2$) Nb Josephson junctions [19], the presence of film defects (e.g., grain boundaries) limits the Josephson correlated regions to areas, $A_0 \sim 1 \ \mu m^2$, which are generally smaller than the physical junction sizes, especially for the large (~ 1 mm²) Al junctions used here. Thus one uses $r_N A_0$ instead of the junction R_N in Eq. (1), where r_N is the specific junction resistivity. The Nb data agreed quantitatively with theory [8-10] using an effective junction area which interpolates between A_0 for H=0 and the high-field limit of Φ_0/H , according to $R_N = r_N/(A_0^{-1})$ $+H/\Phi_0$). This high-field limit of $\gamma(T)$, neglecting A_0 , was also used [16] to explain a crossover between 3D flux lines and 2D pancake vortices in highly anisotropic HTS and it equals the interlayer Josephson coupling energy for pancake vortices, offset in neighboring Cu-O bilayers [20] by a separation distance of the Abrikosov lattice spacing. At greater distances, this energy is truncated due to overlap with other vortices.

The use of this field dependence was already recognized [4] for the *c*-axis resistivity in Bi₂Sr₂CaCu₂O_x below the peak, but a critical phase-slippage current, with a different *T* dependence than the above Josephson $I_c(T)$, was suggested as its origin. In addition, an *ad hoc* assumption [4] of an empirical *H*-independent "normalstate resistance" above the peak was needed.

In order to demonstrate that the field dependence of ρ_c has its origins in interplanar Josephson coupling, the effects of fluctuating superconducting regions above T_c must also be addressed, including finite H. The finite,

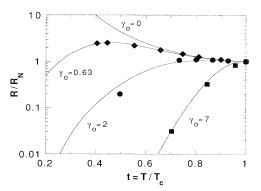


FIG. 1. Zero-bias resistance for discreet Josephson junctions using two thin-film, Al electrodes: diamonds, SG 3; circles, XIII; and squares, SG 9. The lines are fits, explained in the text, for the indicated values of γ_0 .

temporally and spatially averaged Ginzburg-Landau (GL) order parameter, $\psi \propto \Delta$, will remove quasiparticles above T_c , just as in the above case of a mean-field Δ for $T < T_c$, to reduce the quasiparticle conductance below Y_N . The magnitude of $\langle |\psi|^2 \rangle$ due to fluctuations has been calculated [12] after extending the GL theory beyond the Gaussian approximation and including finite H. For the extremely anisotropic Bi₂Sr₂CaCu₂O_x, we make the appropriate approximation of negligible interlayer coupling (i.e., an infinite effective mass ratio), so that the integral over electron momentum parallel to the field (and thus the c axis) is [12] replaced by $1/2d_c$, which reflects the localization of the electrons to a spatial dimension d_c , where d_c should be less than the repeat distance of the bilayers, s. Thus, we obtain

$$\langle |\psi|^2 \rangle = \frac{k_B T_c N_{2D}}{2d_c} t \sum_{n=0}^N \left(n + \tilde{\varepsilon}_H / 2h \right)^{-1}, \qquad (4)$$

where $t \equiv T/T_c$, $N_{2D} \equiv m/2\pi\hbar^2$ is the free-electron 2D density of states (DOS), $h \equiv H/H_{c2}(0)$, $H_{c2}(0)$ is the linear extrapolation of the GL upper-critical field to zero temperature, $\tilde{\epsilon}_H$ is the renormalized $\epsilon_H = t + h - 1$ after the Hartree approximation [12], and N cuts off the summation over Landau levels if the magnetic length, $l_H = (\Phi_0/2\pi H)^{1/2}$, is smaller than the zero-temperature, inplane coherence length $\xi_{ab}(0)$. Since $H_{c2} = \Phi_0/2\pi\xi_{ab}^2$, N is the largest integer smaller than 1/h. Note that $\langle |\psi|^2 \rangle$ represents the magnitude of the order parameter in the Cu-O bilayers, of width d_c . The average over the unit cell is smaller, i.e., multiplied by a factor of d_c/s . To obtain the T-dependent $\langle |\psi|^2 \rangle$, the self-consistency condition [12] is needed:

$$t = \tilde{\varepsilon}_{H} - h + 1 - \frac{k_{B}T_{c}}{8E_{c}(\pi\xi_{ab}^{2}d_{c})}t\sum_{n=0}^{N}(n + \tilde{\varepsilon}_{H}/2h)^{-1}, \quad (5)$$

where E_c is the condensation energy per unit volume, $H_c^2/8\pi$, and we have assumed that the GL parameter $\kappa \gg 1$. After summing over Landau levels, $\langle |\psi|^2 \rangle$ is found to be virtually field independent above T_c . There is one parameter left for $\langle |\psi|^2 \rangle$, and if values of H_{c2} and H_c are known, it is d_c . There is some semantical ambiguity here, since H_{c2} and H_c do not follow the 1-t dependence of the GL at low t, but saturate (e.g., in the clean limit, to one-half the extrapolated value). For Bi₂Sr₂CaCu₂O_x, appropriate values for $\mu_0 H_{c2}(0)$ and $\mu_0 H_c(0)$ are thus twice the measured values of 44 and 0.8 T, respectively, obtained from muon-spin-resonance experiments [21] and fits to the irreversibility line [22].

In order to fit ρ_c with the Josephson junction model, Δ is required at all $T < T_c$. We exploit the proportionality of $\langle |\psi|^2 \rangle$ in the GL theory to $\Delta(T)^2$ of the BCS theory near T_c , as shown by Gor'kov, to match the slope of the low-*T* extrapolation of $\langle |\psi|^2 \rangle$ from Eq. (4) to that of BCS near T_c . Using a straight-line tangent to both, we interpolate $\Delta_{int}/\Delta(0)$ at all *T*. Note that for finite *H*, both $T_c(H)$ and $\Delta(0)^2$ are reduced by a factor of 1-h.

We use $\Delta_{int}/\Delta(0)$ and the zero-field $\Delta(0)$ from low-T tunneling [13-15] in Bi₂Sr₂CaCu₂O_x to calculate the pair conductance from Eqs. (1) and (3), but the effective junction area for R_N in Eq. (1) must be considered carefully. By including the quartic term in the GL free energy, the fluctuation calculation [12] in a finite field shows that the coherence length $\xi(T)$ does not diverge at T_c , but that the coherence area is given by $\pi\xi(T)^2 = \pi\xi_{ab}(0)^2/\tilde{\epsilon}_H$. At low temperatures in a magnetic field, however, we truncate this coherence area by the size of the lowest Landau-level orbit [11], i.e., Φ_0/H (we assume that A_0 is much larger).

In the zero-field ρ_c of Ref. [4], Josephson coupling only occurs for $T < T_c$, presumably because above T_c the superconducting regions are rapidly fluctuating and uncorrelated. Thus for the quasiparticle conductance above T_c we use that of a normal metal to superconductor junction, $Y_{NS}(T)$, for which an analytical solution is given on p. 45 of Ref. [17]. Although the quasiparticle conductance will shift towards $Y_{SS}(T)$ as T drops below T_c , we have ignored that in our calculations as it is difficult to quantify and, in any case, $Y_{NS}(T)$ is close to $Y_{SS}(T)$, i.e., $\sim 70\%$ -80%. In fact, these calculated Y_{NS} and Y_{SS} assume as BCS DOS and equilibrium distribution functions, each of which may be only an approximation of the actual situation that may be better dealt with theoretically in a diagrammatic approach above T_c .

In Fig. 2, the data of Fig. 1 of Ref. [4] are shown as open symbols with a two-parameter fit with the above model (γ_0 to match the field-dependent resistance increase below the peak and d_c for $\langle |\psi|^2 \rangle$ to match the field-independent shape above the peak). The present model thus explains both the increase and decrease of ρ_c with reasonable parameters: e.g., from the field-inde-

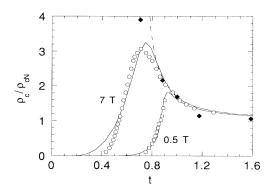


FIG. 2. Measurements of Ref. [4] for ρ_c of a Bi₂Sr₂CaCu₂O_x single crystal (open squares, 0.5 T; open circles, 7 T) compared to our calculations for a series of Josephson junctions between Cu-O bilayers which includes the effects of fluctuations in Bi₂Sr₂CaCu₂O_x, for the same two fields (solid lines) and with negligible Josephson coupling (dashed line). The latter is appropriate for the zero-bias tunneling resistance measurements in discreet break junctions [15] of Bi₂Sr₂CaCu₂O_x single crystals (solid diamonds).

pendent decrease at high temperatures, $d_c \sim 0.6$ nm which is less than s, but greater than the Cu-O bilayer spacing of 0.3 nm implying that the bilayers are well coupled; while the field-dependent increase at low T gives $\gamma_0 \sim 4.1$ at 0.5 T and ~ 1.1 at 7 T, implying $\rho_{cN} \sim 1.4$ and 0.4 Ω cm, respectively. These values show internal consistency with the measured ρ_c , extrapolated to higher T, which is $\sim 1 \Omega \text{ cm}$ (Fig. 1 of Ref. [4]). Note that the value of d_c , but not the quality of the high-T fit, is proportional to our choice for $H_{c2}(0)/H_c(0)^2$. Also shown in Fig. 2, as solid diamonds, are zero-bias tunneling resistance measurements in discreet break junctions [15] of $Bi_2Sr_2CaCu_2O_x$ single crystals. The excellent agreement with the measured ρ_c of Ref. [4] above the peak supports our contention that the origin of $\rho_c(H,T)$ is ordinary tunneling. Josephson coupling is weak in these high- R_N break junctions and is only seen at lower T (with $R_0/R_N \ge 10$).

Although γ_0 does not precisely follow the expected 1/H dependence, including A_0 can improve this. Also, however, the quality of the fit at 7 T is noticeably poorer than 0.5 T: Near the peak, the discrepancy is likely due to our neglect of $Y_{SS}(T)$ in the calculation, and that is consistent with the same deviations seen with the break-junction data in Fig. 2. However, at 7 T we do not understand the more abrupt onset of the experimental ρ_c at lower T.

The above fit predicts surprisingly large field-independent fluctuations of $\langle \Delta^2 \rangle \sim 0.2 \Delta(0)^2$ at T_c , so it is imperative to demonstrate consistency with other available data. A significantly smaller magnitude could not fit the experimental ρ_{cN} data for $T > T_c$. The fluctuation conductivity in the *a*-*b* planes, σ' , can be written [23] as a sum over electron momentum, *k*, as

$$\sigma' = \frac{2e^2}{m^*} \sum_k \langle |\psi_k|^2 \rangle \tau_k , \qquad (6)$$

where $m^* = 2m$, $\tau_k = \tau_0/(1 + k^2 \xi_{ab}^2)$, and $\tau_0 = \pi \hbar/8k_B T_c \times (t-1)$. If we presume a predominant size for fluctuations to be ξ_{ab} , and thus approximate k by ξ_{ab}^{-1} , Eq. (6) becomes

$$\sigma' = \frac{e^2 \tau_0}{2m} \langle |\psi|^2 \rangle \,. \tag{7}$$

For comparison with experiment, we need the average conductivity over the unit cell, i.e., $\langle \sigma' \rangle = (d_c/s) \sigma'$. Evaluating $\langle |\psi|^2 \rangle$ from the above fluctuation analysis [12] for t = 1.2 gives $\langle \sigma' \rangle = 620$ mho/cm for Bi₂Sr₂Ca-Cu₂O_x. The best samples for comparison to this model, however, are low-defect, epitaxial films of Tl₂Ba₂Ca-Cu₂O_x, shown in Fig. 3. We find a field independent [24] $\langle \sigma' \rangle = 550$ mho/cm at t = 1.2, which agrees quite well with 650 mho/cm from the above calculation using the slightly smaller s = 1.47 nm for Tl₂Ba₂Ca-Cu₂O_x. Another check comes from the agreement of the *T*-dependent break-junction tunneling conductances [15] shown in Fig. 2.

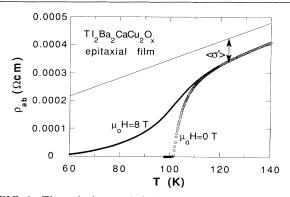


FIG. 3. The *a*-*b* plane resistivity measured in expitaxial films of $Tl_2Ba_2CaCu_2O_x$ for fields of 0 and 8 T, parallel to the *c* axis. The line is a fit of a linear normal-state resistivity to this field-independent, high-*T* data using the temperature dependence for 2D fluctuations [see Eqs. (6) and (7)].

Our model explicity includes Josephson coupling between Cu-O bilayers which is not contained in the Hamiltonian of Ref. [6]. The contribution of Ref. [6] was to include flux flow in the fluctuation analysis of the resistive transitions and for YBa₂Cu₃O₇ this gives excellent agreement with experiment: Apparently, because of the relatively strong coupling in this less-anisotropic material, the model works for ρ_c also. However, for Bi₂Sr₂CaCu₂O_x, our analysis strongly suggests that phase fluctuations across the interplanar Josephson junctions dominate the dissipation.

In summary, we find that the unusual peak in ρ_c of Bi₂Sr₂CaCu₂O_x can be quantitatively understood as a result of considering the material to be a series stack of ordinary Josephson tunnel junctions. Recently, a number of direct measurements [3] on Bi₂Sr₂CaCu₂O_x crystals have also been shown to be consistent with such a model. It should be pointed out that severe compositional deviations or granularity can also cause increasing ρ_c at low T (i.e., semiconducting behavior), but the intrinsic tunnel-junction effect will always be present.

One of us (K.E.G.) thanks Tony Leggett for useful discussions and Salman Ullah for discussions and assistance in calculating the fluctuation contribution. This work is supported by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences under Contract No. W-31-109-ENG-38 (K.E.G.) and the National Science Foundation Office of Science and Technology Centers under Contract No. STC 91-2000 (D.H.K.).

 P. W. Anderson, in *High-Temperature Superconductivi*ty, edited by J. Ashkenazi et al. (Plenum, New York, 1991), p. 1; R. A. Klemm and S. H. Liu, Phys. Rev. B 44, 7526 (1991); N. Kumar and A. M. Jayannavar, Phys. Rev. B 45, 5001 (1992); A. J. Leggett (to be published).

- [2] K. Tamasaku, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. 69, 1455 (1992); S. L. Cooper, D. Reznik, P. Nyhus, M. V. Klein, W. C. Lee, D. M. Ginsberg, B. W. Veal, A. P. Paulikas, and B. Drabowski (to be published).
- [3] R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, Phys. Rev. Lett. 68, 2394 (1992).
- [4] G. Briceno, M. F. Crommie, and A. Zettl, Phys. Rev. Lett. 66, 2164 (1991).
- [5] Y. I. Latyshev and A. F. Volkov, Physica (Amsterdam) 182C, 47 (1991); A. Kapitulnik, in Proceedings of the Los Alamos Symposium, 1991 (to be published).
- [6] R. Ikeda, T. Ohmi, and T. Tsuneto, Phys. Rev. Lett. 67, 3874 (1991); J. Phys. Soc. Jpn. 60, 1051 (1991).
- [7] I. Giaever, H. R. Hart, and K. Megerle, Phys. Rev. 126, 941 (1962).
- [8] P. W. Anderson, in Proceedings of the Lectures at Ravello Spring School, 1963 (unpublished).
- [9] V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).
- [10] V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).
- [11] R. Ikeda, T. Ohmi, and T. Tsuneto, J. Phys. Soc. Jpn. 58, 1377 (1989).
- [12] S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991).
- [13] Q. Huang, J. F. Zasadzinski, K. E. Gray, J. Z. Liu, and H. Claus, Phys. Rev. B 40, 9366 (1989); Q. Huang, J. F. Zasadzinski, K. E. Gray, E. D. Bukowski, and D. M. Ginsberg, Physica (Amsterdam) 161C, 141 (1989).
- [14] J. X. Liu, J. C. Wan, A. M. Goldman, Y. C. Chang, and P. Z. Jiang, Phys. Rev. Lett. 67, 2195 (1991).
- [15] D. Mandrus, L. Forro, D. Koller, and L. Mihaly, Nature (London) 351, 460 (1991).
- [16] D. H. Kim, K. E. Gray, R. T. Kampwirth, J. C. Smith, D. S. Richeson, T. J. Marks, J. H. Kang, J. Talvacchio, and M. Eddy, Physica (Amsterdam) 177C, 431 (1991).
- [17] B. N. Taylor, thesis, University of Pennsylvania, 1963 (unpublished), p. 50.
- [18] A. Gerber, T. Grenet, M. Cyrot, and J. Beille, Phys. Rev. Lett. 65, 3201 (1990); C. Attanasio, L. Maritato, and R. Vaglio (private communication).
- [19] D. H. Kim, K. E. Gray, and J. H. Kang, Phys. Rev. B 45, 7563 (1992).
- [20] J. R. Clem (private communication).
- [21] D. R. Harshman, R. N. Kleiman, M. Inui, G. P. Espinosa, D. B. Mitzi, A. Kapitulnik, T. Pfiz, and D. L. Williams, Phys. Rev. Lett. 67, 3152 (1991).
- [22] When the irreversibility results are scaled to the thermodynamic measurements in YBa₂Cu₃O₇, a value of $H_c(0) = 0.8$ T is found for Bi₂Sr₂CaCu₂O_x. See Fig. 3 of K. E. Gray, D. H. Kim, B. W. Veal, G. T. Siedler, T. F. Rosenbaum, and D. E. Farrell, Phys. Rev. B **45**, 10071 (1992).
- [23] M. Tinkham, Introduction to Superconductivity (Mc-Graw-Hill, New York, 1975), p. 251.
- [24] There is a small magnetoresistance which is not visible on the scale of Fig. 3. See D. H. Kim, K. E. Gray, R. T. Kampwirth, and D. M. McKay, Phys. Rev. B 43, 2910 (1991).