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Accidental Near Degeneracy of the Order Parameter for Superconducting UPt3
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UPt3 appears to have a tetracritical point in the H-T plane for all orientations H of H. Such a point
can exist only if the Ginzburg-Landau (GL) "Hamiltonian" has a conserved quantity Q. It is shown
that the model of a two-component vector order parameter admits a Q for Hllc, but has no tetracritical
point. Hence, accidentally nearly degenerate order parameters are examined, particularly the model
where one behaves as an 8 and the other as a B representation of D6&. This model can yield a tetracriti-
cal point for all H. Its physical properties are calculated and GL parameters are fitted to experiment.

PACS numbers: 74.20.De, 64.60.Kw, 74.60.Ec, 74.70.Tx

The finding of multiple superconducting phases in the
heavy-electron material UPt3 [1-4] makes it almost cer-
tain that it is an infrasymmetric superconductor [5]. The
field-temperature (H-T) phase diagram is particularly
interesting; for all orientations of H studied so far, three
vortex phases appear to coexist at a tetracritical point,
and the inner phase boundaries H„(T) lie below the
extensions of the outer, i.e., H, (zT), lines [2]. These
features are clearest for H&c, and less so for Hllc and for
H at 45 to c. Thus, although it can be argued that the
phase boundaries merely approach each other very closely
without actually meeting for the latter two cases, the nat-
ural assumption at this stage of experimental develop-
ment is that there is a tetracritical point for all field
orientations.

In this Letter we shall argue that the existence of a
tetracritical point puts very strong constraints on the or-
der parameter. We shall work within the framework of
Ginzburg-Landau (GL) theory. In a previous paper by
one of us [6], it was shown that since H, 2 is determined
by the smallest eigenvalue of the operator (which we will
call a GL "Hamiltonian, " 'PoL) in the linearized GL
equations, one should think of the tetracritical point as a
point of intersection of two smooth energy curves of PpL
that vary with some parameter. One knows from quan-
tum mechanics that such an intersection cannot occur un-
less there is some conserved quantity Q that commutes
with &gL, and unless the two intersecting curves belong
to different Q eigenvalues. The first task in understand-
ing the tetracritical point is thus the identification of a Q.

The GL theory studied in Ref. [6] is based on a two-
component order parameter ri = (ti„tiy), which covers
any of the four two-dimensional representations of D6I„
the point group of UPt3. There is also a weak symmetry
breaking field to account for the split transition [4] when
H =0. This has been a popular model for UPt3 [7-9]. It
was shown in Ref. [6] that the corresponding GL Hamil-
tonian PGL does indeed admit conserved quantities Q~~

and Q&, for both Hllc and HJ c [101, but the tetracriti-
cal point itself was only analyzed for H~c. There is no

Q for other orientations H of H, and it was pointed out
that careful studies of the phase diagram for nonspecial

J%

H would provide a discriminating test of this model. See
also Ref. [11].

In this Letter we point out a serious difficulty with this
model. We find that although there is a Q~~, the lowest
energy curve (which yields H, z) never intersects with any
other [12]. (There are plenty of intersections among the
higher energy curves. ) Thus a strict tetracritical point is
impossible. We argue below that it is difficult to amend
the model so as to lead to a "weakly" avoided crossing.
The only other way to get multiple superconducting
phases is to have two accidentally nearly degenerate order
parameters g, and gb, transforming as diAerent represen-
tations of D6p. We therefore search for two representa-
tions that can yield a crossing for all H. One possibility
is for g, and gb to have diferent parity, in which case
they can have any rotational symmetry. The other is for
g, and qb to have the same parity, in which case we find
that one of them must belong to an A representation (A 1

or Az), and the other to a B representation (Bl or Bz).
We study the second case (which we call the "AB" mod-
el) in detail, and obtain formulas for specific heat jumps
when H =0, H, ~, 0,2, and the slopes of the inner transi-
tion lines [13].

Note that although both order parameters in the AB
model are one dimensional, at least one must not trans-
form as the identity, Alg, so in our terminology it still
represents infrasymmetric superconductivity. The corn-
bined order parameter can still have nodes that may be
detectable either by power-law behavior of thermo-
dynamic and transport quantities, or by the anisotropy of
the nonlinear Meissner effect [14]. If the A representa-
tion is 2], i.e., either A~g or A t„, there are no nodes re-
quired by symmetry. If it is A2s (and the other is there-
fore B~s or Bzs), then there are line nodes along three
meridional "great circles" and six additional point nodes
along the "equator. " (The Fermi surface is not implied
to be a sphere. ) If it is A2„(and the other is therefore
Bl„or B2„), then there are only two point nodes along
the c axis.

It is worth noting here that recent work [15] appears to
directly tie the zero field splitting to the existence of weak
basal plane antiferromagnetism in UPt3, in that both
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disappear under hydrostatic pressures of about 4 kbar.
These data seem at first to disfavor the AB model and to
support the two-component model, with the antifer-
romagnetism providing the symmetry breaking field [7,8].
The implied p-T plane phase boundaries pose severe ther-
modynamic problems, however; the Neel line TJv(p) ends
in midplane, which is impermissible, as is the junction of
three second-order lines [the superconducting T, (p)' s]

with nonzero specific heat jumps [16], so that in our view,
these data cannot be regarded as conclusive. We shall,
therefore, focus only on the better understood H-T phase
dlagralTi 1n this Let.tel.

We first consider the two-component model. To fourth
order in the g's the GL free energy density is given by

f« =Q+ la, I'+ Q- la. I '+Pi(~. n*) '+P2ln. gl
'

+ &i@I' QJ p; 'Qg+ K'2p; Q' pgpj PC3p; Q~ p~'g

+ x'4p,*g;*p, g; +/i 2/8ir,

where i,j =x,y, p; = —i6; —2eA;/t'ic, A and h are the lo-
cal vector potential and magnetic field, and Q+- =Qo(T

T w ), T +. = T o+ E/Qo, wltll T o && e'/Qp, tllc synllllc-
try breaking perturbation. We require Pi & 0 for stabili-
ty, and p2 & 0 to get two transitions in zero field [8(a)].

To cast the eigenvalue equation for H, 2 into dimension-
less form, we scale all lengths by the magnetic length
i = (6c/2eH ) 'i2, and define

+23 K2+ K3I icb K1+ (K23/2)I ii &23/2Kb I

L' (K2 K3)/2K'b, E ='El /KbI F =Qp(T&o T)l /&b .

For the case Hllc, writing il ~ =(rl„:t ily)/J2 and a
= (p„+ipy )/ J2, we get

20 a+ 1
—v 2Ma + 6 9+

2QQ +t.' 2a a+1+v, , g —, (2)
'9+

=F
rl—

We have also set p, g =0 as the energy is raised by taking
p, g&0. The conserved quantity is Qi=e'" ', the parity
of the Landau level number. If (as is not unlikely [17])
the ground state is homogeneous when H =0, the gra-
dient terms in fGL must be separately positive definite,
which implies that Kb & 0, x'4 & 0, and that u and v lie in
the triangular region [18]

1
—v & 0, 1+v & 2lu l . (3)

Our goal is to find the eigenvalue spectrum [E(F)j when
eAO for fixed u and v constrained by Eqs. (3), and in par-
ticular to see if the lowest energy solution has diAerent
parities for low and high e —1/H. In the infinite field
limit @ =0, it is easy to solve Eq. (2) exactly, and one can
show that the lowest t~o energy states have even parity
[19]. In the low field limit e ~, it is better to use the
rixI riy basis, and do pcrturliatlon thcol'y in I/E. To lowest
order the g„and g~ subspaces separate, and the lowest
state is the zeroth Landau level for g~, which also has
even parity. An odd-parity curve must thus intersect the
lowest even-parity curve either never or at least twice.

The latter is unlikely, but to rule it out, we have solved
for the energies [E(e)j numerically for various u and v

satisfying Eq. (3), with a grid Au =Av =0.1. We do not
find an intersection with the lowest energy curve for any
u and v. This is illustrated in Fig. 1, where we replot the
first four energies E(c) in the H Tpl-ane; h, 2=1/e and
i =Qp(T T o)/e. The same general structure is ob-
tained for all u and v.

We therefore conclude that the simple two-component
model of Eq. (1) cannot explain the observed phase dia-
gram of UPt3 for Hllc. We now ask if it is possible to ob-
tain an intersection and thus save this model by assuming
that the symmetry breaking term t.' decreases with H„
vanishing and changing sign at some value of H, . Such
an assumption is not implausible, since the symmetry
breaking perturbation is usually ascribed to a small anti-
ferromagnetic moment in the basal plane, which can be
expected to respond differently to fields parallel and per-
pendicular to the c axis. The eigenvalue problem is still
given by Eq. (2), with 8—e(H)/H. Note, however, that
the spectrum [F(8)j is even in e, since the change

—8 in Eq. (2) is equivalent to the unitary transfor-
mations a i a, a ~ —I'a ~, and g — —

g . Since
even when F=O, the lowest energy is separated from the
next, there is no intersection. Further, as stated above,
the lowest t~o energies have even parity when t. =0, so
the lowest odd-parity curve does not approach the lowest
even-parity one near the corresponding value of H any-
way.

To explain a split transition in zero field, one is there-
fore compelled to use a sum of two order parameters un-
related by symmetry, which happen to have nearby tran-
sition temperatures by accident [20]. Depending on the
representations of D6g to which the two order parameters
(denoted rl, and rib) belong, the GL free energy may or
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I IG, 1. The four lowest energy curves for the two-
component model with Hllc, shown in the II-T plane. The +
signs are the Landau level parities. Note that there is no inter-
section with the lowest energy (highest h, 2) curve. The dashed
lines show how the high field behavior of two of the curves ex-
trapolates to t = —l.0 for h =0, and thus illustrate avoided
crossings. The same behavior is seen for all other values of u

and I. .
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foL = Z a In I'+/3 ln I'+ ~;Ip n;I'+ ~ Ip, n Il'
i =a,b

+P r / n, i i nb i +P2 [(n, nb ) +c.c.] + h /8 rr . (5)

Here, a; =ap(T —T; ), with T, =Tp+ e, Tb = Tp —e, with
To)) E & 0. We note immediately that there is no sym-
metry breaking term, and Eq. (5) is actually invariant
under all rotations about the c axis. Quantities such as
H, r and H, z calculated on the basis of Eq. (5) will thus
be isotropic in the basal plane, as is observed.

We first consider solutions in zero external field. We
can clearly take q, to be real and positive. The energy is
minimized by taking nb to be real if pz &0, and pure
imaginary if Pz & 0. Writing P'=(Pr —2~P2~)/2, the
quartic coupling terms in Eq. (5) can be combined into
2p'n, nb, where the phase of nb (if any) has been re-
moved. The stability constraints are then

P. & o, Pb & o, P' & —(P.Pb ) '". (6)

There are three solutions for which foL is stationary: (i)
n, Ao, nb =0, (ii) n, =0, nb %0, and (iii) n, ao, nb eo.
Clearly, (i) nucleates immediately below T„which is
therefore the observed upper transition temperature T, +.
To obtain a continuous transition to solution (iii) at a
lower temperature, we require p & p, and p & pb [22].
The lower transition temperature, T,—,and the specific
heat jumps (both measured from the normal state) are
then given by

may not contain terms such as [21]

PJ ga P J gb~ PJ ga Pzgb .

We wish to look for pairs of representations in which such
terms are not aOowed by symmetry, for otherwise the g,
and gb subspaces will be coupled together in the eigenval-
ue problem for H, 2, and it is extremely unlikely that a
conserved quantity (and therefore a tetracritical point)
will exist for all H. There are now two cases. The first is
that g, and Ttb have difTerent parities. Gradient coupling
terms are then obviously excluded, but ga and gb can
have any rotational symmetry, and it is hard to reduce
the number of possibilities further. The second case, and
the one we shall study in more detail, is that g, and gb
have the same parity. In this case one can show that one
of the types of terms in Eq. (4) is always allowed, except
when one representation is 8] or A2, and the other is B]
or 82. We dub the resulting model the "AB" model.

We now proceed to analyze the AB model. The GL
free energy density is the same for all four cases and can
be taken to quartic order as

H,", (T) =ap(T, b
—T)yp/2~g. b,

where (bp =hc/2e is the IIux quantum, and

g; (0) = [rc; (rc; cos 0+ rc sin 0) ] 'l2 .

(lo)

The condition for an intersection to exist for all 0 is

g, (0) & gb (0) (assuming e « Tp), or equivalently,
& re, x, rc,

' & rrbrc/, (All . rc's must be positive if the zero-
field equilibrium solution is to be homogeneous. ) The
tetracritical point (T*,H*) is located at

T* = Tp —e(g. +gb)/(g. gb), —

H = apitrpe/rr (g~ gb ) ~

(12)

We now sketch the inner line (H„) calculation. (See also
Refs. [6] and [9].) Suppose n, has nucleated and is given

by the usual centered rectangular Abrikosov Aux lattice.
The linearized instability condition for gb is

[Kbpy +gb (0)p /Kb]nb+p'r
~ n ~ nb+2p2n nb

= abnb .

(13)

This is the problem of a charge in a magnetic field [24]
plus a periodic potential given by the g, lattice. Writing
t =(T—T,2), we have n, pc r ', and we can get H„ to or-
der t by first-order perturbation theory in the potential.
The gb solution is a vortex lattice with the same periodi-
city as g„but shifted by a vector r, and has an overall
relative phase. The potential energy can be evaluated in
terms of two sums Sr(r) and 52(r), given by

In. nbl', (n. nb )'
(14)

where the angular brackets denote spatial averages.
Then H„ is found to be

H,', (T, 0) =(H,',g, f H,;g.)/(gb —I-g. ), — (15)

specific heat jumps, r,h is given by

~C /T,
,

(P. —P')'
AC +/T, + PgPb P

The zero-field solutions also enable one to calculate H, ~

in the London approximation. We have done this, and
find a kink at T, for a—ll 0 [13].

We next consider the problem of H, 2 and the inner
transition lines. The calculation of the outer lines reduces
to finding H, 2 for a one-component order parameter with
a uniaxially anisotropic mass tensor. For a field applied
at an angle 0 to the c axis, we get [23]

(7) where

hC+
Tc+

ap AC-
2P, T, —

ap(P +Pb 2P )

The lower transition is thus enhanced or suppressed de-
pending on the sign of p': T, ~~Tb if p'~~0. The ratio of

I = (sr~i —2IP2~21)/2e. l4 (16)

Here, P~=()n, ~ )/((n~~ ) =1.1596 is the usual Abriko-
sov lattice parameter, and we have set the efTective GL
ratio g/X to zero, since it is of order 0.03 for UPt3. It is
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to be understood that the displacement r is chosen so as
to minimize I, which maximizes H„ in Eq. (16). Sl and
S2 are functions only of r and the ratio (b/g„where
g; =l(te;/g;) 'l . Sz vanishes unless the two lattices coin-
cide or are displaced by half of either of the two primitive
lattice vectors, ul and u2. Note that since iSzi (Sl, Eqs.
(15) and (16) imply that the inner (H„) lines will lie
below the extensions of the outer (H, 2) lines if P'& 0.
The latter does appear to be so for UPtq (see below).

A comparison of our results with existing data is useful
even though it leaves a large lee~ay in fixing the GL pa-
rameters. As the experimental H, 2 curves for Hllc [2]
show substantia1 curvature, a quantitative fit to the
theory for H„ is not possible, and the only useful infor-
mation that can be extracted from them is that x'b/x', =1.
We can use the data for H&c, however, along with the
measured T, +- values to obtain relative values for the
four P parameters. Using the H, 2 slopes, we estimate
that gb/g, =0.8, implying that (b/g, =1.1. We estimate
T, +, T,—, T*, and e to be 500, 438, 400, and 10 mK, re-
spectively, and H*=0.47 T. This gives P'/P, =0.68. Us-
ing this value of P'/P„we can reproduce the measured

slope by taking r =u 1/2 [25]. We obtain Pi/P,
=1.38, and iP2i/P, =0.015. With these values of Pl and

Pz, the lowest I at the H„ transition is obtained by taking
r=ul/2, and the slope is fitted by taking Pb/P, =0.74,
and a specific heat jump ratio r,h= 1.37. (Note though
that putting the g, vortices at the centroid of an g~ vor-
tex triangle is almost as good. We get Pb/P, =0.75, and
r,h=1.36. ) This is reasonably close to the value of 1.18
for r, h that one would deduce from Ref. [4]. It thus ap-
pears that the vortex lattices are displaced by r =ul/2 at
both inner transitions, but this cannot be regarded as cer-
tain.

In summary, we believe we have shown that the AB
model can explain all global features of the phase dia-
gram and is therefore a strong candidate for UPt3. The
most useful test of the model, in our view, would come
from careful investigation of the phase diagram, especial-
ly for nonspecial H.
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