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Persistent Spin and Mass Currents and Aharonov-Casher Eft'ect
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Spin-orbit interaction produces persistent spin and mass currents in a ring via the Aharonov-t"asher
eftect. An experiment in the He-2] phase in which this eAect leads to the excitation of mass and spin
supercurrent is proposed.
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The discovery in 1983 of the Berry phase [1] brings a
new understanding of diAerent topological eA'ects in

quantum mechanics. The simplest realization of the Ber-
ry phase is the Aharonov-Bohm (AB) eA'ect of a charged
particle in an external electromagnetic field. A transpar-
ent demonstration of the AB effect is a persistent current
in mesoscopic rings threaded by magnetic field [2], as
well as many other experiments, which proved the rele-
vance of the AB eAect on transport in multiconnected
geometry. More recently it has been pointed out that
there is an analog of the AB eIITect in the presence of the
spin-orbit (SO) interactions, which leads to nontrivial
phase shifts and to a topological interference efI'ect of the
wave function of a particle with spin, which was called
the Aharonov-Casher (AC) elfect [3].

There is a major diff'erence between AB and AC
efIects: The AB effect comes from the true gauge invari-
ant coupling j„A„between the current j„and the elec-
tromagnetic vector potential A„and for that reason can
be observed even in the absence of magnetic field
8 =curlA in the region where particles are propagating.
In the AC efI'ect, on the other hand, the phase of the
wave function is changed as a result of SO interaction,
i.e., as a coupling of the spin current j„' to an eA'ective

tensor gauge potential F.,e„„,where t.„„q is the antisym-
metric tensor and E is the electric field. Therefore
nonzero electric field on the path of the particle is neces-
sary in order to produce the AC phase shift [4]. In the
case of electrons moving in the atomic electric field, SO
coupling can be written in a more familiar form as cx I
with / being the orbital momentum of the electron [5].

In spite of this important diAerence the unifying point
of view on both eAects is that they are a consequence of
the Berry phase acquired by the wave function of the par-
ticle under the transport from some initial state through
the set of intermediate states in the Hilbert space back to
its original configuration.

Here we will implement this point of view and report
on the observation that the AC eAect can result in per-
sistent spin and mass currents. The wave function of a
particle in external magnetic and electric fields and in the

presence of SO interaction will acquire the spin depen-
dent Berry phase: (i) The additional phase of the wave
function is given by p=@Aa+tT, @p,c, where @As is the
AB llux piercing the ring (in case particles are charged)
and @Ac is the AC Aux due to the AC eA'ect; a, =+ is
the spin projection (we assume spin 2 particles). The
formerly doubly degenerate eigenstates and eigenvalues
will acquire spin dependent shifts, E„(eAa+ cr, @AC),
+„(&Ii~a+ca,@~c); see also [6]. (ii) This spin dependent
shift will lead to a persistent spin current:

&E(~A.+~.~Ac)
Jp = Tr Oq4+A t)@AC

c dE
2ttR tl@Aa

with j~' being the z component of the spin current along
the ring; o; are the Pauli matrices. In the presence of the
net spin polarization the AC eA'ect also leads to mass
current proportional to n t

—n ~.

Another realization of the Berry phase leading to per-
sistent spin currents was discussed in [7]. Note that the
state with persistent spin current does not violate P (pari-
ty) and T (time reversal) invariance, in contrast to the
persistent mass current. As a result of this, persistent
spin current can be excited in the absence of external
magnetic flux. Actually for an electron state with non-
zero angular momentum l (say in an atom) persistent
spin current means nothing but the existence of the SO
interaction. (iii) The AC effect and persistent spin
currents are independent of the charge of the particle and
can be observed for neutral particles, as was done in the
original observation of the AC eAect for neutrons [8].
(iv) The time-dependent AC llux generates an eA'ective

spin dependent "electric" field EAC via the Faraday law
(1/c) t),&AC = —IIiE~C. dl acting on neutral as well as on
charged particles with spin. This is a local eAect, in-
dependent on the macroscopic phase coherence [9].

The closely related, but diAerent, problem on the eAect
of random So interactions on the electron transport prop-
erties in a mesoscopic ring was considered by Meir,
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Gefen, and Entin-Wohlman [6]. They showed that in the
presence of SO scattering the flux dependence of energy
and eigenfunctions acquires the spin dependent shift
NAB ~ 8 where shift 6' is governed by an average over the
random SO interactions of the ring. Thus the overall
efI'ect of the SO interaction in this approach is given by
the particular impurity configuration and is independent
of external fields. In our case we will neglect the random
SO scattering and consider the AC eA'ect in external elec-
tric field, which can be varied in the direction and magni-
tude. This will lead to spin current excitation due to the
Faraday law for time dependent AC Aux. An interesting
realization of this eAect will be shown below to take place
in superfluid He, where external crossed electric and
magnetic fields should cause a supercurrent.

Consider first a one-dimensional ring of radius R. %e
will describe it using a tight binding model on a closed
chain of N sites separated by a distance a =R/N. An
external magnetic field perpendicular to the plane, Bile,
(we will use cylindrical coordinates given by unit vectors
e&,e~, e, ), results in the twisted boundary conditions for
a charged particle wave function +(N) =exp(i2~gB/
@0)+(0) with the AB flux @~a=8,trR and No=bc/e.
The Hamiltonian of this chain, taking into account the
SO interaction and Zeeman splitting gptto" 8 (g being
the gyromagnetic ratio), can be written as

H = —t g A(n)
l n, o)(n+ 1,o'l + H.c.

n, o, o'

O(a/R) contribution. As we will see, the Berry phase
will be proportional to the circulation of E~ on the ring;
thus taking into account the commutator will lead to
higher order terms. Strictly speaking, Eqs. (4),(5) are
valid in the N ~ limit when A(0) =A(N).

For the slowly varying electric field E (l8&El/lEla ((1,
where a is a distance between sites) the spin transfer ma-
trix 5 equals

5=/exp i o

gpss

=l Ac
dr && E(r)

since it is proportional to 8&E. Only the radial com-
ponent of the electric field E~ contributes to the contour
integral in Eq. (6). As a result

gpss ft dr x E(r) = —e,2' CAC

Ac @p
(7)

and using Eqs. (6),(7) the eigenfunction equation with

twisted boundary conditions can be written in the com-
pact form

=exp i cr(~dr && E(r) (6)
Ac

We neglected the commutator in the exponent in Eq. (6)
coming from the HausdorA formula

A 8 A +8+ (l/2) [A,Bj

+ Z (en+gal aa B)ln, ~)&.n, o'I
n, o, a' N

go

.@AB . @AC
=exp 2%i + 2%i0

@p @p,Yp,

Here n labels sites, en denotes the on-site energies, and

A (n) =exp[iA~c(n, n+1)]

. gPB .=exp i cr
Ac

t n+l
dr x E(r)

where AAC is the AC analog of the vector potential @Ac
=g„"==/ 'Apc(n, n+1).

Following the approach of Ref. [6] we use the transfer
matrix T~ defined as

It is obvious that in this geometry the spin dependent AC
Aux coming from SO interactions enters the transfer ma-
trix as a spin dependent phase. This equation allows one
to find energy eigenvalues and eigenfunctions of the tight
binding Hamiltonian equation (2) if they are known for
the bare problem without SO interactions. Namely, the

energy spectrum and the wave functions will depend on
the efI'ective Aux which is a sum of spin independent
(AB) and spin dependent (AC) parts,

+n ~n (@AB+Oz @AC) +n +n (@AB+Oz@AC)

= TN
gp

where y„ is the spinor wave function of the particle in

coordinate representation, and we drop out the spin
indexes for simplicity. Using the structure of the Hamil-
tonian Eq. (2) we can write Ttv as a direct product:

1 0
TJV 5 T/V, TJV =t gtv ( + )

Ni=+A().

as was mentioned. The energy dependence on the NAg

leads to the persistent spin current jv,
* [see Eq. (1)].

Note again that the spin dependent Berry phase @Ac is

nonzero even for neutral particles. This equivalence of
the AC and AB efI'ect holds only if the spin relaxation is

neglected.
It is instructive to estimate the magnitude of the AC

flux for realistic mesoscopic systems. From Eq. (7) it fol-
lows that

C'At- Rk;
=gPB

To derive this equation we had to neglect the noncommu-
tativity of [A, o, ]—(gott/hc )F.,a, which leads to an

The relativistic nature of the AC efTect is reAected in the
ratio of electric potential on the scale of the size of the
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ring eRE to the rest energy of the particle mc .
If the electric field is time dependent the variation of

the AC flux results in the appearance of a spin dependent
driving force due to the Faraday law. This causes the
spin current to be in accord with Ohm's law. Applying
the Faraday law to spin t ) liquids (assuming
=const) we find that particles experience the spin depen-
dent force —a, (I/c)o1, @Ac=a.,iIiE~c. dI. Again, in the
presence of net spin polarization this force will cause a
mass current. This eAect is a consequence of the Lorentz
invariance and electrodynamics and is a local
phenomenon, as has been pointed out previously [9]. In
order to excite spin and mass current due to local force
the global phase coherence along the ring is not required.

For a ring of the radius R —10 cm, in external elec-
tric field F. —10 V/cm, Eq. (9) gives for particles with
gyromagnetic ratio g —1 that %Ac/&o —10 [see Eq.
(9)], that is, a tiny effect. On the other hand, in semicon-
ductors, the eA'ective g factor can be 2 orders of magni-
tude larger [10]. For these samples the eftective flux will
be of the order of 10 '40, which makes the interference
eIII'ecis associated with the AC eA'ect in external fields ex-
perimentally observable. Still the experimental observa-
tion of the eAect in a real mesoscopic ring does not look
like a simple problem. The main difficulties are due to
the screening of the electric field and the necessity to
work with considerably strong magnetic fields which
prevent the usage of a SQUID.

Consider another class of systems with phase coherence
established on the macroscopic scale —superfluid He. In
strong enough magnetic field (8—10 kG) the superfluid
transition is known to split into two phase transitions
[11]: (1) First, atoms with spins along the field are
paired —this is called the He-A 1 phase. (2) After a
second phase transition, atoms of both spin directions are
paired in the He-A2 phase.

The He-2 i phase is a superfluid with 5, =+ 1 Cooper
pair condensate. Atoms with spins opposite to the mag-
netic field are not condensed. In a certain range of tem-
peratures, h T—(6 x 10 mk/kG) 8, the He-A

~ is the
only superfluid phase. Thus the He-2 i phase has impor-
tant features: (1) phase coherence of the 5, =+1 con-
densate over macroscopic distances and (2) total spin po-
larization of the coherent subsystem. This implies that in
external electric field the condensate will exhibit the AC
eAect.

We propose the following experiment. Consider the
He-A] phase within a capacitor formed by two coaxial

cylinders. Let x and y be the coordinates on the surface
of the cylinder perpendicular and along the axis corre-
spondingly, so that electric field has only a z component.
If the spins are polarized along the y axis, the phase of
the condensate wave function acquires the position depen-
dent shift P(x) =p(0) +2~pc(x)/@o, with &~c(x)
given by Eq. (7) with the integral taken along the x
direction, i.e., around the cylinder. This generates a con-
densate flow around the ring with the velocity v, =(6/

2m3)t1„$(x), i.e. , a supercurrent. For F. —10 V/cm this
current will be v, =2x10 cm/sec (compare with the
critical velocity in He-A, v, =0.02 cm/sec [11,12]). The
phase diff'erence accumulated by the Cooper pair upon
transport through the cylinder capacitor of circular per-
imeter L will be d, ff =6x10 L[cm]. In order to have a
phase difference 6&=0.1(2x) we need to have a channel
of length L —1 m. Presently most experiments on He
are done in containers with characteristic size of a few
cm.

On the other hand, in the singly connected geometry,
with a plane capacitor instead of the cylindrical one,
there will be no persistent current in the stationary state.
The boundary conditions for the wave function are not
periodic and the AC gauge potential does not produce a
net flux through the system and no persistent super-
current will be induced.

The ac modification of the same idea looks more in-
teresting. We propose the experiment in the singly con-
nected capacitor with electric field oscillating with some
frequency m: E =Eocosmt. Such a field will cause oscil-
lating super and therefore normal currents which ap-
parently can be detected. The power loss of the viscous
flow is known [13] to be equal to P=8xLrlv, , where L is
the length of the channel and il-3&10 g/cmsec is the
normal He viscosity. The estimation for the field
F. —10 V/cm gives P = 10 ' erg/sec. The power loss in

this case is frequency independent since t. , Eocos Nt
=

2 Eo. For example, the temperature dependence of the
impedance of the capacitor can be measured with high
accuracy. As a result of viscous flow of the normal com-
ponent the impedance in He-Ai will be diA'erent from
both the normal and any other superfluid phase: Only in

phase does the AC eAect lead to the mass super-
current and therefore to the normal component flow.

To conclude, we proposed a new realization of the AC
eA'ect, which leads to persistent spin and mass currents in

mesoscopic rings and in the superfluid He-2 ] phase. We
argue that a time dependent electric field in a particular
geometry will excite locally spin current even in macro-
scopic samples, via the Faraday law.

After we submitted this paper we became aware of the
recent preprint by A. Aronov and Y. B. Lyanda-Geller
(to be published), in which the closely related efl'ect of
the spin-orbit Berry phase on the transport in semicon-
ductors was considered.
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