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The motion of the classical polaron in a dc electric field is investigated numerically. In a limited range
of parameters (field and coupling constant) a stable stationary asymptotic drift of the electron with a
constant velocity is shown to exist. Outside this range of parameters the electron is asymptotically ac-
celerated by the field, like a free charge. This model is an illustration of the dissipative behavior of a
classical mechanical subsystem coupled to a mechanical system with an infinite number of degrees of
freedom (here the classical LO phonon field).

PACS numbers: 7 l.38.+i

The model of an electron interacting with a longitudi-
nal optical (LO) continuum phonon field through the
Frohlich coupling [1] is one of the basic quantum-
mechanical models used in the description of polar solids.
Many years ago Feynman [2] introduced a path integral
formulation of this polaron model, in which the integra-
tion over the phonon variables is formally performed.
The action functional of the polaron appearing under this
path integral corresponds to a retarded self-interaction of
the electron with itself. In spite of the many applications
of the quantum-mechanical polaron model, its truly clas-
sical version got very little attention. About a decade ago
some analytical asymptotic solutions with finite orbits
[3-5] were found.

In this work the evolution of the system from an initial
state at t =0 without polarization (no phonons) and an
applied dc electric field collinear with the initial velocity
of the particle is investigated. Therefore the solutions de-
scribe a one-dimensional collinear motion and do not in-
clude for vanishing dc field the finite orbit solutions of
Refs. [3-51.

The main result of this paper is the analytical and nu-
merical proof of the existence of stationary-How asymp-
totic solutions in the presence of the dc electric field.
This is an example of a dissipative asymptotic motion of a
particle interacting with a system having infinitely many
degrees of freedom (the phonon field). In recent years
dissipative asymptotic results on a mathematically rig-
orous level have been obtained concerning the motion of a
classical particle in a Rayleigh gas (see Ref. [6] for a
comprehensive review). The peculiarity of the dissipative
behavior described in this paper is that it is not of statisti-
cal nature, but refers to the trajectory of a single particle
and describes a state with stationary How.

Let us define brieAy the model (although it may be
found in many textbooks). It describes a polarization (di-
pole) density P(x), which in the absence of interaction u
obeys an oscillator equation with the mass density p and
a single frequency mL~. This phonon field interacts with
an electron of mass m and charge e through the Coulomb
energy
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where the inverse of the phonon frequency mLo was
chosen as a unit of time, the cutoff' length a as a unit of
length, the energy unit is m(toLoa), and the phonon field
was rescaled to a dimensionless vector field u(x, t). After
this rescaling it becomes obvious that the theory depends
only on two dimensionless parameters, the coupling con-
stant and the rescaled dc field,
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(For illustrational purposes, with a cutoA' length a =16 A
and GaAs parameters C=3.2.)

Since only the longitudinal part of the phonon field is
coupled to the electron, it is sufTicient to concentrate on

where p(x, t) =e6(x —r(t)) is the charge density of the
electron, r is the current coordinate of the electron, and

is the background dielectric constant.
Unfortunately the model with Coulomb potential is

mathematically ill defined due to the singularity at the
origin. This is due to the idealization to an oscillator con-
tinuum contained in the above formulation. The phonons
of solid-state physics are actually oscillations of a discrete
lattice and the dangerous continuum idealization is usual-
ly repaired by restricting the wave vectors of the phonon
(polarization) field to the first Brillouin zone, therefore
assuring the conservation of the correct number of de-
grees of freedom (Debye trick). This is equivalent to the
replacement of the Coulomb potential through a non-
singular cutoA potential v(x;a) depending on a cutoA
length a. The modification of the potential is such that
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Besides the interaction with the phonons we consider
also an external dc electric field E acting on the electron.

The prototype of the classical polaron model we consid-
er in the following is then described by the Lagrangian
function
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these longitudinal degrees of freedom. The coupled equa-
tions of motion follow as
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One may eliminate the polarization charge in favor of
the electronic variable through the formal solution of Eq.
(3). We shall do this by choosing a special solution of the
inhomogeneous equation adequate for defining an initial
value problem at t =0. We chose a vanishing polariza-
tion in the absence of the electron charge (introduced at
t =0); then
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V u(x, t) =- dt'sin(t —t')V'v(x —r(t')) .
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(4)

This polarization charge density induced by the electron
is nonvanishing only along the path of the electron within
a tube whose transverse dimension is given by the cutoff'

length. Introducing this result into the Newton equation
of the electron one gets the closed equation for the elec-
tron (from now on to be called polaron)

I l
'r'(t) =6+C dt'sin(t —t') V(r(t) —r'(t)), (5)
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where a new potential V was introduced according to the
definition
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FIG. l. Possible (asymptotical) stationary-flow velocities of
the polaron u as a function of the ratio of the field @ to the cou-
pling constant C.

Equation (11) is a nonlinear integrodifferential equa-
tion with infinite memory and therefore finding its gen-
eral solution analytically is hopeless.

Let us assume that there is a solution in the presence of
the field, which "very rapidly" develops into a stationary
motion with constant velocity v:

x(t) ut .

A necessary condition for this velocity is
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If one chooses for v(x) to be the Coulomb potential, one
gets for V(r) again the Coulomb potential, but otherwise
the two are diAerent. Nevertheless, if one chooses a
cutoA' procedure in which the "smoothed point charge"
p(x) —= —

4 nV v(x) falls off sufficiently rapidly away
from x =0, the potential V(r) will be also Coulomb-like.

One sees that it is convenient to consider the potential
V(r) as the primary quantity instead of v(r). We chose
for our calculations a simple analytical form for this po-
tential which is regular in the origin, and Coulomb-like at
large distances

which leads to the transcendental equation (in terms of a
Bessel function)

C 1&o-
p

(10)

The dependence of the asymptotica11y stationary velocity
u on 6'/C is represented in Fig. l. It is clear that above a
certain field (8,„=0.483C), which is the upper bound
of the momentum transfer rate to the phonons in a uni-
form motion, no asymptotically stationary-How solutions
are possible. It is worth mentioning that in order to sus-
tain a stationary flow with a finite (unscaled) velocity au
as a 0, according to Eq. (8) one needs an infinite (un-
scaled) field F.

Of course the existence of such an asymptotically sta-
tionary solution is not yet shown, but just a necessary cri-
terion for its existence was found. Unfortunately a stan-
dard stability analysis is not possible. First of a11, we do
not know the exact solution but just its asymptotically
leading term. Second, any linearized version of the
theory, due to the memory effects looks even more com-
plicated than the original nonlinear equation.

The very existence and stability (against variations of
the initial velocity) of the stationary drift solutions will be
shown only numerically. Equation (8) has indeed a very

v(.)-=("+»-'t'.

I n what follows we shall consider only collinear
motions, which are the only solutions if the initial velocity
of the electron is collinear with the field, and arrive at the
one-dimensional equation

The solution is completely determined by giving the coor-
dinate and the velocity of the polaron at t =0.

d'x(t) "'d, , „x(t) x(t')—= —C dt sin(t —t )—
dt ' "o 1[x(t) —x(t')1'+ ll' '

1675



VOLUME 70, NUMBER 11 PH YSICAL REVIEW LETTERS 15 MARCH 1993

1.2 1.2

0.8
0.8

-= 0.4
0

0.2

0

-0.2

-0.4

limni, .
fPT&&

0.2

0

&&lihh&hI fI II&hhIh I &hl~hIfh/IIIhhhI III

-0.6
50

I

100 150 200
I

250 300 350
time

FIG. 2. Velocity of the polaron as a function of time in the
presence of a field 8 =0.75 at a coupling constant C=3.2. The
initial velocity was taken to be zero.
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FIG. 4. Velocity of the polaron as a function of time in the
presence of a field @=1.25 at a coupling constant C=3.2. The
initial velocity was taken to be —2.0.

simple structure, which is easy to translate into a rapidly
converging discrete numerical algorithm. In what fol-
lows, numerical solutions of this equation obtained on a
work station are reported.

All the solutions found for various coupling constants,
fields, and initial velocities may be classified in one of two
categories: (a) paths which asymptotically tend to a uni-
form drift, whose velocity (within some error) lies on the
lower branch of the curve of Fig. 1; and (b) paths which
asymptotically tend to the uniformly accelerated motion
of the noninteracting electron in the external dc field.

The example given in Fig. 2 illustrates a trajectory of
the first category. At a coupling constant C=3.2 in the
presence of a field 6 =0.75, after starting with an initial
velocity x (0) =0, one very rapidly obtains a steady
motion, whose velocity corresponds to the asymptotically
predicted value. Under the same parameters, but an ini-

250

tial velocity x(0) =1.5, the trajectory suddenly changes
its nature and becomes uniformly accelerated as is shown
in Fig. 3. The same kind of transition to accelerated
motion occurs if the initial velocity x(0) =0 of the elec-
trical field is increased to 8 =1.25, although this is still
smaller than the maximally allowed momentum transfer
rate given for this coupling constant by 8,„=1.5456.
Nevertheless, an asymptotic motion with a constant drift
may be again realized if the initial velocity is taken oppo-
site to the direction of the field x(0) = —2.0. Above the
maximal field of 1.5456 the asymptotical motion is al-
ways uniformly accelerated.

It can be easily seen from Eq. (4) that in the asymptot-
ically steady drift motion the induced polarization charge
density closely follows the electron, and it is well approxi-
mated by a running wave with the phase velocity v and
the phonon frequency along the electronic path. At the
same time it can be shown that the energy of the phonon
system increases linearly with the time, while the interac-
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FIG. 3. Velocity of the polaron as a function of time in the
presence of a field 8 =0.75 at a coupling constant C=3.2. The
initial velocity was taken to be 1.5.
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FIG. 5. Coordinate of the polaron as a function of time in

the presence of a field 8 =1.25 at a coupling constant C=3.2.
The initial velocity was taken to be —2.0.
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FIG. 6. Coordinate of the polaron as a function of time in

the absence of a field for a coupling constant C=3.2. The ini-
tial velocity for the two trajectories was taken to be 2.0 and 4.0,
respectively.

tion energy remains asymptotically constant. If during
the initial stage of the motion, which is mainly deter-
mined by the initial velocity of the electron and the ap-
plied field (ballistic motion), the electron does not lose
its contact to the polarization charge, then steady mo-
tion follows asymptotically, if in the same time the
field strength does not exceed the maximal momentum
transfer rate Nm, „.

On the contrary, in the asymptotically accelerated
motion the polarization charge density decreases as I/t at
any finite distance behind the electron. The electron loses
its polarization cloud and the interaction energy vanishes
as 1/t. This kind of asymptotic behavior follows whenev-

er, either due to the high initial velocity or high field al-
ready in the initial (ballistic) state of the motion, the
electron leaves its polarization charge far behind.

On the grounds of the discussion above it is also under-
standable why no drift solutions on the upper branch of
the stationary curve, having high velocities, were found.

A closer inspection (blowup) of Fig. 2 actually shows
small amplitude oscillations, which decay very slowly, if
at all. These oscillations are well pronounced in the case
of the drift motion at C=3.2 and 8 =1.25 and x(0)
= —2.0 shown in Fig. 4. Nevertheless, the path of this
polaron in Fig. 5 shows a clear constant average drift ve-

locity of 0.455, slightly above the expected ideal value of
0.41. The ground frequency of the oscillations is always
I (the phonon frequency); however, it has many higher
harmonics. The deviation of the drift velocity from its
ideal value might be attributed either to the fact that the
true asymptotic regime was not yet achieved, or rather to
the rough asymptotical analysis, which took only the
leading asymptotic term into account.

The above described scenario has been checked by vari-
ous coupling constant strengths, fields, and initial veloci-
ties.

Strong asymptotic oscillations are also typical for very
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FIG. 7. Coordinate of the polaron as a function of time in

the absence of a field at a coupling constant C=3.2, for an ini-
tial velocity of 0.01.

low fields. Therefore, although in the absence of the elec-
tric field according to Fig. 1 the asymptotical drift veloci-
ty should vanish, we cannot exclude oscillating slow
asymptotic drift solutions. According to the numerical
experience, the motion of the electron in the absence of a
dc field first suff'ers a rapid slowdown and afterward a
very slow drift regime sets in. In Fig. 6, two trajectories
are represented for C=3.2 having two difTerent initial ve-
locities [x(0)=2.0 and 4.0]. The drift velocity of the
slow motion is, however, not constant. One of the trajec-
tories was followed over a long time duration (t =1000)
and we found that the average drift coordinate increases
sublinearly approximately as t . We cannot decide,
however, on the basis of our numerical results, whether
the motion is asymptotically very slowly damped, or a
steady asymptotic drift regime with a very small velocity
will be achieved. It is also relevant that for very small in-
itial velocities the oscillatory component of the motion
has a very complicated structure like that shown in Fig. 7
for x(0) =0.01 and C =3.2 and no damping could be put
into evidence.
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