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Periodic Anderson Model in Infinite Dimensions
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The symmetric periodic Anderson model is studied in the limit of infinite spatial dimensions within an
essentially exact quantum Monte Carlo method. The single-particle spectral function develops a gap h, ,
and the neutron structure factor also develops a gap = 2h. . Depending upon the ratio of h, to other ener-
gy scales, there is a transition to an antiferromagnetic state. In the paramagnetic state, both the f orbit-
al specific heat and ferromagnetic susceptibility display rough scaling with T/A; for T & A they are
heavy-fermion-like while for T & h, they are insulatorlike.

PACS numbers: 71.30.+h, 65.50.+m, 71.28.+d, 75.20.Hr

Since the discovery of the heavy-fermion materials
with rare-earth or actinide elements [1] the periodic An-
derson model (PAM) was considered the most promising
candidate to at least qualitatively describe the rich phys-
ics in these materials. From early studies it is known that
most of the unusual properties of these materials like the
large coe%cient in the specific heat, transport properties,
and even magnetic and superconducting properties can be
qualitatively accounted for [I]. Quantitative agreement
with experiments is sometimes possible due to the fact
that over a large region these systems may be regarded as
a regular array of independent Kondo scatterers, which
makes it possible to calculate especially thermodynamic
quantities using the extremely well understood impurity
Anderson model [1,2].

However, in view of the controversial two-particle
properties of these materials it is desirable to have an ex-
act solution of the periodIc Anderson model in a nontrivi-
al limit. A quite general limit to obtain sensible approxi-
mate or even exact results for such locally highly corre-
lated models is the limit of infinite dimensions [3-5]. In
this limit the dynamics of the system become essentially
local [4] which considerably simplifies the task of calcu-
lating physical quantities [5]. Recently, several groups
independently proposed a mean-field theory for the Hub-
bard model based on the special properties in this limit
[6-9] and were able to calculate a variety of quantities
approximately [8] or even essentially exactly [9,10]. In
this Letter we demonstrate that this procedure can be ex-
tended to the periodic Anderson model. In combination
with exact quantum Monte Carlo (QMC) procedures
[11] we calculate one- and two-particle properties of this
model which can be viewed as essentially exact results for
the periodic Anderson model in a nontrivial limit.

Although the inclusion of more realistic features
presents no fundamental di%culty for our method, we
want to concentrate on the simplest version of the period-
ic Anderson model
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where G~„(z) denotes the one-particle Green's function
for the f states and A(z) is the effective mixing due to the
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In (I), d(f) t destroys (creates) a d (f) electron with
quantum numbers [k(v), o], ei, denotes the dispersion for
the extended d states, U is the screened Coulomb matrix
element for the localized f states, and V characterizes the
mixing between the two subsystems.

Although the lattice structure is not essential to our
arguments, we will study the model (I) on a simple hy-
percubic lattice of dimension D and assume that the
dominant contributions to the dispersion ea, come from
transfer matrix elements along the coordinate axes to the
first (t t) and second (tz) neighbors in each direction. Al-
though this surely is an oversimplifying assumption for
real systems, it has the advantage that the free density of
states (DOS) in the limit D ~ becomes purely Gauss-
ian, A (e) exp[ —(e/e*) ]/(tre* ) 'I, with a width
such that e* —=2(ek )t, [5]. We choose e* =1 as a con-
venient energy scale for the remainder of this Letter.

Since dynamics become essentially local for D =~
[3,4], one can use the fact that the proper one-particle
self-energy is then k independent to resum the perturba-
tion series and obtain an effective impurity Anderson
model with a self'-consistently determined medium [6-
9]. For the Hamiltonian (1), these equations read [12]
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FIG. I. The f-electron DOS obtained from QMC and
maximum-entropy method (QMC-ME), and that obtained
from perturbation theory (SEPT) when U =2.0, V=0.5, ed

, an=e =0, and T=0.2. The corresponding imaginary frequency
self-energies are shown in the inset.

bare mixing V and the presence of all other f states at

c ose se1 d lf-consistency cycle to determine X, z . The
difficulty remains that, in order to obtain a refine z
from an initial guess, one has to solve the impurity An-
derson model defined by (3). Among the several different
methods to tackle this problem, QMC is the most efficient
for the current purposes, since it (i) is essentially exact
and (ii) allows us to address two-particle properties in ad-
dition to the one-particle spectra [9].

Recently, a renewed interest has occurred in a special
class of lanthanide-based compounds such as CeNiSn
[13l or Ce3Bi4Pt3 [14,15], which show a behavior remin-
iscent of normal heavy-fermion materials at high temper-
atures but become insulating, i.e., develop a gap, at low

temperatures. n eI these materials the f-electron contri u-

tion o expet t perimental measurements is isolated by taking
the diA'erence of measurements on the Ce compoun an
the isostructural La analog [13-15]. That the periodic
Anderson model in the symmetric limit, ef Ed 0 may
indeed provide a (pseudo)gap in the one-particle excita-
tion spectrum is well known [16,17]. It is therefore in-

teresting to study its relevance for these materials, and, in

the interest of brevity, we will limit our discussion to t e
symmetric case.

The maximum-entropy (ME) method was used to ob-
tain real-frequency results, Sf(co) and Af(co), from imag-

QMC data [18]. Sf(co) is the f-electron neu-
tron structure factor Sf(q, co) integrated over a q.

[19].was obtained using the method described in Ref.
Af (co) = —(I /)rrl mG, „( c+oi +0) is the f-electron density
of states. Here, second-order site-excluded perturbation
theory (SEPT) in U, in which the self-energy was sub-
tracted off from the site propagator during the self-

tep [8], was used to produce a default model
for the maximum entropy process. The SEP hh SEPT metho
represents a good starting point for the analytic continua-
tion which then uses the QMC result to obtain more pre-
cise information. As shown in the inset to Fig. 1, the

nd SEPTagreement between the imaginary time QMC and S
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FIG. 2. (a) Local neutron structure factor Sf(co) and (b) f
electron single-particle density of states Af co) when U=2.0,
T =0.05, and ef =ed =0 for various values of V.
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FIG. 3. Temperature dependence of Af(co) and Sfand S co) when
V=0.5, U=2.0, and t.f =ed =o.

results is good. However, there was always a statistically
significant difference between the QMC and SEPT re-
sults. These small difterences in the imaginary time re-
sults yield larger diAerences in the real frequency results
(Fig. 1). The diff'erences between SEPT and QMC-ME
become greater when U/V or T increases, and are ex-
tremely important when calculating dynamic quantities
such as transport [20]. Thus, all subsequent dynamical
information reported here was obtained with the ME
method.

In Fig. 2, Af(co) and Sf(co) are plotted for various
values of V when T=0.05 and U=2.0. These values of
U and V are sufficient to ensure that the results are in the
strongly correlated regime, for which n~

—
v~ ) & 0.75.

Both Af(co) and Sf(co) display a gap [when V=0.4, a
gap forms in S(co) at still lower temperatures]. The d
and total DOS (not shown) also display a gap of roughly
the same size as the f DOS. However, the magnetic gap
h, , is slightly larger than twice the single-particle gap 6,
when both are measured from m =0 to the frequency of
the peak. A magnetic gap h~ = 2h, was recently found in
Ce38i4Pt3 [15], in which 5=5 meV and A =12 meV.
This is expected [15], since to lowest order in U the con-
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tribution to the magnetic susceptibility is particle-hole ex-
citations which need a minimum excitation energy of the
order of the full single-particle gap 2h, . The approximate
values of 6 appear in the table inset in Fig. 2(b).

The temperature evolution of Af(cu) and Sf(ru) is
shown in Fig. 3. As the temperature is lowered, Af(rp)
first begins to develop a Kondo-like peak at the chemical
potential. However, before the peak can become sharp,
the gap begins to form when T = d, [I]. The evolution of
Sf(cp) =g"(cp)/[I —exp( —Pro)] is shown in the inset to
Fig. 3. For high temperatures Sf(co) is essentially identi-
cal to the impurity result [19]. As T is lowered, and after
the single-particle gap begins to form, Sf(ro) begins to
develop a gap h~ = 2h, .

In Fig. 4 we show the f (d) renormalization factor
(f(d)(T) = I Im& (rup)/rpp, where rap =zrT and Xf "
is the total f (d) self-energy [21], and the contribution of
the f states to the specific heat Ayf(T) =ACf(T)/T. The
inset in Fig. 4(b) displays the total y(T) =C(T)/T when
V=0.5. Note that Ayf and AP ' display a rough univer-
sal scaling with T/A, and that yf and y have pronounced
peaks at T=h, . The latter has been seen in CeNiSn
[13]. At high T, where the system is a metal, both yf and

P '(T) are approximate measures of the f-electron
eA'ective mass, and are roughly proportional. As the tem-
perature is lowered, both first rise like in a usual heavy-
fermion system. However, before the heavy-fermion state
can form completely the gap begins to open and this
rough proportionality is broken, indicating the formation
of an insulating state. The occurrence of this insulating
state is directly connected to the perfect particle-hole
symmetry in the present case and has a rather intuitive
physical reason: As T&&h„ the Kondo eAect leads to a
scattering resonance at or near the chemical potential.

Since there exists a level crossing between these dynami-
cally generated local quasiparticle states and the con-
duction-band states, one will find a splitting with a gap at
the position of the resonance [22]. For the particle-hole
symmetry under consideration the resonance develops ex-
actly at the chemical potential [16,17], i.e. , the resulting
system consequently is an insulator.

In Fig. 5, the f-orbital magnetic susceptibilities are
plotted versus T/A. Consistent with what is seen in

Ce3Bi4Pt3 [14], the ferromagnetic susceptibility displays a
broad peak when T = A. hgF and the screened local mo-
ment T2/;; vs T/d fall onto a single curve for diA'erent
values of V, indicating rough universality with 5 as the
scale. The antiferromagnetic susceptibility g~F is quite
nonuniversal. The V=0.4 and V=0.5 results display a
transition with a small screened local moment Tg „,.
Whereas the V=0.6 result does not display a transition.
The lack of universality of g&F is probably due to the fact
that the intersite RKKY exchange mediated by the con-
duction band does not scale with 6 [23] (which probably
also yields some slight variations of scaling of 2/F). De-
pending upon the relative size of h, and the RKKY ex-
change, we get either a paramagnetic state or an antifer-
romagnetic transition.

In addition to depending upon U and V, the antiferro-
magnetic transition in the symmetric model is quite sensi-
tive to nesting. To demonstrate this, we added a second
hopping term tq to the second neighbor along the axial
direction, which acts to frustrate the Neel order. As
shown in the inset to Fig. 5(b) the Neel transition tem-
perature T~ is quickly depressed when tz/rl becomes
finite. Furthermore, using the methods outlined by
Miiller-Hartmann [4], one may calculate the susceptibili-
ty g(x) for dift'erent values of

4 o
I

so
I

~ 15 — o

o I a=+ +&MM Bt Qw J0L~
0.0 0.5 1.0 1.5

T/h,

1.0

- C]

0.5 ~ oo

0.02

0.01
0.0 0.1 0.2 0.3

oa ohio o

(b)

o v=0.4
o V=0.5
O g={).6

, Kh n. o
10 & a

&a
0

C3

5 0
Q

0 L
0 1

CI
C3 g

C3

2 3
T/5

(b)
0.3

0.1

o V=0.4
V=0.5
V=0.6

0.8
:= 0.6

F 04
0.2
0.0

Q
~ o

(~ ~~) ' tJ

2 4 6 8

T/h.

0
0

c8, n o.
4 6

T/6

0.0
0.0 2.0 4.0 6.0 8.0 10.0

FIG. 4. (a) The f and d renormalization factors, and (b) the
scaled f electron yf vs T/5 when U=2.0 and Ed =Ef =0, for
various V. In the inset to (b), the total y is plotted vs T/6 when
V =0.5.

FIG. 5. Susceptibilities of the symmetric PAM when U =2.0
for various values of V. The inset of (a) shows the Neel tem-
perature T~ when V=0.4 as a function of a frustrating hopping
rp/1 i.
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1x(q) = » g[t 1 cos(qt)+t2 cos(2qt)] .
d ti+t2 I

(4)

For the symmetric model in the paramagnetic state, we
found that g(x) rises monotonically as x falls from l.
However, for tz/ti & 0.5, the smallest (most negative)
value of x no longer occurs at the Neel point in the Bril-
louin zone q =(tr, tr, tr, . . . ), rather it falls on a point on a
hypersurface centered around the Neel point. Thus for
t2/ti & 0.5, any remaining transitions are to an incom-
mensurate state.

In addition to discussing what we found in the PAM, i'.

is useful to discuss what was not found. From a direct
calculation of the RKKY exchange [23], one might con-
clude that ferromagnetism would be favored for the mod-
el very far away from half filling. However, we did not
find a divergent ferromagnetic susceptibility for any
filling or set of parameters. Perhaps screening of the lo-
cal moments inhibits the transition. In addition, we
found that s-wave symmetry superconductivity was al-
ways suppressed by the correlations.

In conclusion, we have provided an essentially exact
solution of the infinite dimensional PAM. For brevity, we
have concentrated on the symmetric limit, and show that
the f spectrum, specific heat, electronic renormalization
factors, and susceptibility are heavy-fermion-like for high
T, and insulatorlike for low T. This, as well as the gap in

Sf(co ) and the behavior of y =C/ T are consistent with
experiment. In addition, we have sho~n that hgF and
5yf scale with T/h. Our method may also be applied to
the asymmetric limit, and used to obtain transport prop-
erties. These results along with a quantitative compar-
ison to experimental data will be presented elsewhere
[20,23].
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