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Intermittency and Predictability in Turbulence
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We discuss the relation between predictability and the sensitive dependence on initial conditions in

turbulent Aows. We find that the maximum Lyapunov exponent k and the variance of the effective
Lyapunov exponent diverge as a power of the Reynolds number with scaling exponents which can be cal-
culated from the eddy turnover time at the Kolmogorov length using the multifractal approach. The in-

termittency leads to long tails in the distribution of the predictability time. The typical predictability
time T is related to the value of X . We provide numerical evidence of this picture within the frame-
work of a cascade model for three-dimensional fully developed turbulence.

PACS numbers: 47.27.—i, 05.45.+b

The intermittency of the energy dissipation in three-
dimensional (3D) turbulence causes the failure of the
Kolmogorov K41 theory which is based on dimensional
arguments [1]. The most evident signature of this failure
is the appearance of a correction to the scaling exponents

g~ of the velocity structure functions (~u(x+r) —u(x) ~~)

—r ', where ( ) indicates a spatial or temporal average; in

the K41 theory gz =p/3 [2]. The experimentally ob-
served nonlinear shape of g~ is well described by the mul-

tifractal formalism and reproduced by multiplicative ran-
dom processes such as the random beta model [3].

The word intermittency is often used with different
meanings. In this Letter intermittency of the energy dis-
sipation indicates the presence of spatial and temporal
bursts in the velocity gradients, and dynamical intermit-
tency indicates the existence of temporal fluctuations in

the degree of chaos.
The dynamical intermittency may have rather impor-

tant eIITects on the predictability in turbulent flows, a

phenomenon which has not been fully investigated. The
purpose of this Letter is to discuss the consequences of
the multifractality in energy dissipation on the growth of
a disturbance on the velocity field u(x) and on the statis-
tics of the predictability time in turbulent flows.

The chaotic behavior of a dynamical system is charac-
terized by a positive maximum Lyapunov exponent X,
which measures the typical exponential growth rate of an
infinitesimal disturbance [4]. In 3D fully developed tur-
bulence, the maximum Lyapunov exponent should be
roughly proportional to the inverse of the smallest
characteristic time of the system, that is, the turnover
time ~ of eddies of the size of the Kolmogorov length g
(the viscous cutoff). By dimensional counting, after in-

troducing the adimensional scaling parameter I =r/L, the
turnover time of an eddy of size l is r(l) —Tpl' ", where
h is the Hoelder exponent of the velocity diA'erence in the
eddy ~u(x+r) —u(x)~ —Vl". In these relations, we have
used the typical large length scale of the system I, the

corresponding typical speed V=(eL) '~, and time Tp
=L/ V = (L /e) '~ which are expressed as usual in terms
of the spatial average of the energy dissipation density
e=V /L. Moreover, it can be shown that the viscous
cutoA vanishes as a power of the Reynolds number
Re= VL/v (v is the viscosity), i.e., tl —L Re ' '+" [5].
These dimensional relations imply that the maximum
Lyapunov exponent should scale as

1 1 Re
r (rl) Tp

with

In the K41 theory h =
3 for all space points so that

a = —,', as first pointed out by Ruelle [6].
However, one expects that the presence of quiescent

quasilarninar periods should change the chaotic features
of the fluid flow. In fact, the intermittency of energy dis-
sipation can be described by introducing a spectrum of
scaling exponents h. In the multifractal approach, the
probability that the velocity difference scales as ~u(x
+r) —u(x)

~

—VI is assumed to be Pi(h) —1

where the function D(h) is given by the Legendre trans-
form g~ =mini, [hp —D(h) +3]. The multifractality also

implies the existence of a spectrum of viscous cutouts,
since each h selects a different damping scale q(h)-L
xRe ' '+", and hence a spectrum of turnover times.
To find the Lyapunov exponent, we have to integrate over
the h distribution PI(h) at scale l = l(hr)/L:

' h —D(h)+ 2

1p I dI Tp" L

where r(h) is the turnover time of an eddy of scale q(h),
so that r(h)/To-[r/(h)/L]' "-Re " ""+"'. In the
limit Re ~ the viscous cutoffs g(h) vanish and the in-
tegral can be estimated by the saddle point method,
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) -(I/T, )Re

with

(3)

D(I ) —2 —aa =max
1+h

The value of a depends on D(h). By using the function
D(h) obtained from fitting the exponents gq with the ran-
dom beta model [3], we find a =0.459. . . , which is small-
er than the Ruelle prediction [6] a =0.5.

The finite-time fluctuation of the degree of chaos can
be characterized by an effective Lyapunov exponent y
[7,8], defined as the exponential divergence rate after a
time delay r of two trajectories close at time t, i.e.,

1, II~u(t+. )II (4)

where Bu is the infinitesimal difference between two ve-
locity fields evolving under the same equation (i.e., the
Navier-Stokes equations).

The Lyapunov exponent is given by k = lim, y,
which has the same value for almost all initial conditions.
However, there are fluctuations for finite r and, in gen-
eral cases, the probability of finding y, &X scales as
P(y) —exp[ —S(y) r], where S(y) )0 with the equal
sign for y=X. Usually, for small perturbations, i.e., when

y
—X =O(r 't )—, central limit arguments can be applied

so that S(y) is quadratic in y
—k. However, the Gauss-

ian approximation does not hold for large fluctuations
and S(y) is an important characterization of a dynamical
system [7,8]. It is worth stressing that the Gaussian ap-
proximation [that is, a parabolic shape of S(y) around its
minimum] can fail even for small Iy —kI, and that there
are cases where the function S(y) is not well defined; see
Ref. [9].

The parameters k and p give the main characterization
of the y distribution. It has been shown that p/X=1
separates weak from strong intermittency (for a detailed
discussion on this point see Ref. [7]).

In order to test our arguments, we have numerically
studied a shell model [10,11] for the energy cascade in

fully developed turbulence. The model is an approxima-
tion of the Navier-Stokes equations obtained by dividing
the Fourier space into shells of wave numbers k„
& Ikl & &n+i A complex scalar u„ is associated with the

nth shell individuated by k„=k02". It represents the
Fourier transform of the velocity field integrated over the
shell volume. Since the energy cascade in turbulence is
believed to be local in the k space with an exponentially
decreasing interaction among shells, it is reasonable to
consider only the interactions of a shell with its nearest
and next-nearest neighbors. The Navier-Stokes equations
are then approximated by a set of ordinary differential
equations. In this dynamical approach one uses an ergod-
ic hypothesis so that the average ( ) is a time average.

The shell model exhibits exponents g~ that are non-
linear in p, in agreement with experimental data [12].

p —„([yp(t+t') —k] [yp(t) —) ])dt'
f+ OO

-((yp —X) ') „, C(t')dt',

where C(t') is the normalized correlation function of
the effective Lyapunov exponents ([yp(t) k] [yp(t +t')
—X])/([yp(t) —Xl ), which has the same qualitative be-
havior of the energy dissipation correlation function.
Thus we define the characteristic time

(5)C(t') dt' —Tp Re

which is assumed to vanish as a power of Re. Moreover,
([yp(t) —1] ) can be estimated by repeating the argu-
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FIG. 1. The Lyapunov exponent X, (diamonds) and the vari-
ance p (crosses) as a function of the Reynolds numbers from a
shell model calculation with N=27 shells. The dashed line is
the multifractal prediction X—Re with a=0.459, where the
function D(h) is given by the random beta model fit of the g~
exponents [3]. The full line indicates p —Re" with w =0.8.

These corrections to the Kolmogorov theory are due to
the intermittency in the dynamical evolution, as energy
bursts are observed to interrupt quiescent laminar periods
when there is a sudden increase of the effective Lyapunov
experiment.

The Reynolds number is obtained from numerical cal-
culations for a shell model with N=27 shells. In our
simulations we change Re by changing only the value of
the viscosity v. The correction to the Ruelle prediction
[6] It, —Re't is clearly evident and agrees with Eq. (3).
We have also computed the variance of the finite-time
fluctuations as a function of Re. Figure 1 shows that it
diverges as p(Re) —Re" with w=0.8. Although it is

sensible to expect w )0 in real turbulent fluid, we cannot
exclude that w=0. 8 is due to the particular form of the
time correlations in the shell model. In fact, w is related
to the decay rate of time correlations. The variance of
the fluctuations of the local Lyapunov exponents can be
computed from the multifractal spectrum of r (h)
Noting that y, (t) =(1/r) jt+'yp(t')dt', an explicit cal-
culation leads to
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ments used for k, so that

(yp)- r (h) P (h)dh — ReJ g T2p

with

D(h) —
1
—2h

y =max
p 1+h

=1.

The result y=1 is model independent, since (yp) —Res,
where the spatial average of the energy dissipation densi-

ty t.' is a finite quantity independent of Re. The fact that
(yp)»X at high Re implies

p —(yp)t =(1/Tp)Re

with

w=1 —z.
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We have performed numerical estimates of the correla-
tion decay times t, in the shell model and found that this
relation is satisfied with z =0.2.

Let us note that in the absence of intermittency one
may expect that t, —X ', and thus z= 2 . The fact that
z=0.2 indicates that the presence of quiescent periods in

the turbulent activity is much more relevant for the decay
rate of time correlations than for the Lyapunov exponent.

The basic qualitative feature of our results is just the
dynamical counterpart of multifractality of energy dissi-
pation in 3D space. In generic chaotic systems a lower
bound of t, is given by k '. It follows that w~ 2 and
w ) a, implying that p/X diverges as Re~ ~, and so the
dynamical intermittency.

Another important signature of intermittency appears
in the statistics of the predictability time T, defined as the
time needed for a disturbance 6 on the velocity field, lo-
calized at the Kolmogorov scale rt(h = —,

' ), to affect the
large scales. In practice we compute the time necessary
for a small error on the dissipative shell to become larger
than a given threshold value g in one of the first shells.
The toleration parameter g is the maximal allowed ig-
norance on the system state in the large length structures
(the energy containing eddies).

Numerically, the time T is observed not to be constant
but to be strongly dependent on the degree of chaos: If
the system undergoes an energy burst, the predictability
time is very small. On the other hand, if the system is in

a laminar period, the predictability time can be very
large. Figure 2 shows the probability distribution func-
tion (PDF) of T for two different values of Re. At
Re=10 we observe a rather peaked PDF with an al-
most Gaussian shape. For larger values of Re (Re
= 2& 10 ) the distribution gets an exponential tail, indi-

cating the possibility of large excursions in the value of T,
depending on whether the system is in a turbulent or in a
purely laminar period. Furthermore, the typical predicta-
bility time T, (the T value where the PDF reaches its
maximum) is very dependent on the Lyapunov exponent
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FIG. 2. Rescaled probability distribution functions (PDF) of
the predictability time T: aP(T) vs (T (T&)/a for (a) —Re
=106 and (b) Re=2x109. The respective average values are
(T) =84.0, 6.32 and the standard deviations o =((T—(T)) &'

are 22.2 and 3.16. The full line is the standard Gaussian.

and hence on the Reynolds number. In the shell model,
one has roughly T, —I/k, so that the typical predictabili-
ty time decreases as a power of Re. Moreover, at increas-
ing Re the occurrence of large values of (T T, )/T, is-
more and more likely. The above scenario does not de-
pend on the values of the threshold g. Our observations
are quite diAerent from some previous results, suggesting
that the predictability time is proportional to Tp, the
turnover time of the energy containing eddies, and hence
independent of Re [13]. The gross features of the proba-
bility distributions shown in Fig. 2 do not depend on the
particular dynamical system considered but only on the
degree of intermittency measured by p/X: When p/X)) 1

the probability distribution of the predictability time has
long exponential tails, while for p/k ( 1 it is very peaked.
For instance, the long exponential tail appears in the
Lorentz model with r slightly larger than r, =166.07 or
in the Pomeau-Manneville map, near the intermittent
transition, as p/A, increases. Therefore, we can safely say
that the mechanism for the occurrence of exponential
tails is not an artifact of the shell model, but a rather
robust feature of highly intermittent systems.
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In conclusion, we have shown that the multifractal
description of the energy dissipation in turbulence should
have rather important implications for the chaotic behav-
ior of turbulent fluids. In particular, we have found the
scaling of the Lyapunov exponent with the Reynolds
number in terms of the multifractal spectrum. Our cal-
culations predict that multifractality gives rise to a
strongly intermittent chaotic regime at high Reynolds
number. In fact, the variance of the fluctuations of the
eAective Lyapunov exponent is found to diverge with the
Reynolds number in a shell model for turbulence. We
thus argue that the mean predictability time depends on
the Reynolds number (it vanishes as Re ' with a=0.46)
and that the occurrence of long predictability times be-
comes more probable at increasing Re. In this sense, ful-

ly developed turbulence exhibits a smooth transition from
a quasi Gaussian (weak turbulence) toward an intermit-
tent regime (strong turbulence) for the statistics of the
predictability time.
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