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We consider the weakly first-order phase transition between the isotropic and ordered phases of
nematics in terms of the behavior of topological line defects. Specifically, we present analytical and

Monte Carlo results for a new coarse-grained theory of nematics which incorporates the inversion sym-

metry of nematics as a local gauge invariance. Increasing the disclination core energy makes the

nematic-isotropic transition more weakly first order, and eventually splits it into two continuous transi-

tions which involve the unbinding and condensation of defects, respectively. We find a novel isotropic

phase with topological order.

PACS numbers: 64.70.Md, 11.15.Ha, 61.30.Jf, 64.60.Cn

Both magnetic and nematic media have orientationally
ordered phases, which are described by a vector and a
"director" (headless vector), respectively. Yet while the
order-disorder transition in magnets is generally continu-
ous, the observed nematic-isotropic transition is discon-
tinuous. The conventional explanation of this diAerence
appeals to Landau theory and symmetry [1]. For nemat-
ics, the order parameter is a traceless symmetric tensor

Q,tt which specifies the local distribution of molecular
orientations. The Landau free energy then contains a
third-order term proportional to Trg, which distin-

guishes between molecular ordering parallel to (Trg3
& 0) or perpendicular to (Trg (0) a common axis.

F'or magnets the order parameter is a vector —the
magnetization —and a third-order term is forbidden by
symmetry. The presence of a cubic term in the Landau
free energy implies, according to Landau theory, a gener-
ically strong first-order nematic-isotropic phase transi-
tion. We will show, contrary to this conventional wisdom,
that (a) the nematic-isotropic transition is not necessarily
first order (and can in principle share the universality
class of the ferromagnetic-paramagnetic transition), and

(b) a new, topologically ordered phase of nematics is pos-
sible.

The nematic-isotropic transition is observed to be only
weakly first order [1]—the correlation length at the tran-
sition is typically an order of magnitude greater than the
molecular size, and the difIerence between the spinodal
and transition temperatures is small. In Landau theory
this implies an anomalously small coefticient for the
third-order term. This would imply the existence of a bI-
axiaI nematic phase at slightly lower temperatures, which
is not seen experimentally [2].

We propose a new picture of the nematic transition
which focuses on disclinations —topological line defects
which are found in nematics but not in magnetic systems
[3]. A disclination is a curve (Fig. 1) whose encirclement
produces a 180 rotation of the local molecular axis

(director). Since nematogens have inversion symmetry,
the director is continuous outside the defect core. We
find that by adding an explicit core energy [4] for dis-

clinations, the first-order nematic-isotropic transition can
be made arbitrarily weak. Eventually, the transition
splits into a pair of continuous transitions with a novel to-
pologically ordered intermediate phase, as shown in Fig.
2. From this point of view the observed weakness of the
nematic-isotropic transition follows from the similarity of
magnets and nematics when defects are suppressed.

Our work is motivated by other phase transitions that
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FIG. 1. (a) A cross section through a disclination. When the
defect is encircled, the local molecular axis rotates through
180 . On a lattice the defect can occur inside a plaquette. The
presence (b) or absence (c) of a defect depends on the product
of the U;~ around the plaquette.
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sistently assigned a direction throughout the system,
eA'ectively converting the nematic order parameter into a
vector. The phase transitions on the line MH should
therefore be in the Heisenberg universality class. Despite
the absence of nematic order, there remains a nonzero
free energy cost per unit length of disclination in the re-

sulting disordered phase T, so the free energy diff'erence

between the two boundary conditions is

0.0
0.0 0.5 1.0 sF&-C2L, (2)

A' (defect suppression)

FIG. 2. Phase diagram for the lattice gauge theory Eq. (3).
The phase boundaries are very straight except near their inter-
section. The dotted line denotes a first-order transition and the
unbroken lines continuous transitions.

have been understood as a proliferation of topological de-
fects. The best-known example is the two-dimensional
XY model; point defects (vortices) unbind at the transi-
tion in accordance with the scenario of Kosterlitz and
Thouless [5]. Similarly, the three-dimensional XY model
can be exactly mapped onto a system of interacting vor-
tex loops, whose unbinding accompanies the transition
[6,7]. Unbinding of point defects [8] has also been pro-
posed as a mechanism for the disordering of the three-
dimensional Heisenberg model. It remains unclear how
the description in terms of defects relates to the Landau-
Ginzburg-Wilson theory of these last two cases [9].

Before we present an explicit calculation, let us discuss
the general features of the phase diagram for our lattice
gauge theory of nematics, shown in Fig. 2. The horizon-
tal axis specifies the bare defect core energy K, while the
vertical axis corresponds to the microscopic nematic in-
teraction J. To distinguish the three phases of Fig. 2, let
us compare the free energies of a nematic fluid confined
to a cylinder of height L and radius R with two diA'erent

boundary conditions. The first allows no disclinations to
pierce the boundary, while the second constrains a single
disclination to pass through the centers of the upper and
lower faces of the cylinder, but allows no other defect
lines to cross the surface.

In the nematically ordered phase JV, the free energy
difference between the two boundary conditions varies as

BF~—C i L lnR,

with Cl given by the (long wavelength) nematic stiffness.
Similarly, there will be a logarithmic potential between a
pair of externally imposed defects. Thus, spontaneous de-
fect loops are small and sparse; those with hedgehog
character are bound in pairs [10].

As the interaction strength is reduced while suppress-
ing defects (reducing J at fixed large K), the nematic
stiA'ness eventually vanishes, just as the spin stiAness of a
magnet vanishes at its critical point. Indeed, if line de-
fects are completely forbidden in the nematic (i.e., for
infinite K), then the local molecular axis can be con-

where C2 is a constant which depends on the bare core
energy as well as the elastic energy within a nematic
correlation length of the defect. In this phase there is no

long-range interaction between a pair of externally im-

posed disclinations. Long defect loops are exponentially
suppressed by an effective string tension [11].

As the core energy is diminished at fixed, weak nematic
interaction (reducing K at fixed small J), an externally
imposed defect line will meander through the sample to
gain an entropy proportional to its length L. Cq will

therefore diminish and eventually vanish at the phase
boundary IM. (We will describe this transition in terms
of an Ising lattice gauge theory whose critical point lies in

the universality class of the three-dimensional Ising mod-
el. ) In the resulting disordered phase 2 the nematic
stiflness and the defect free energy per length both van-

ish, so the free energy difference between the two bound-

ary conditions remains finite as L and R tend to infinity.
In this phase line defects proliferate, and there is a
nonzero density of infinitely long defects.

To test these ideas experimentally, one needs to vary
independently the core energy of disclinations (i.e. , K)
and the local nematic interaction strength (i.e. , J). This
might be achieved by adding a "defectophilic" substance
which exacts an entropic cost for defects by accumulating
in their cores. Conversely, long "defectophobic" mole-
cules which align with the nematogens but entangle un-

pleasantly within the cores would contribute to the free
energy of the cores (while also altering the elastic con-
stants). Since the two disordered phases will be dificult
to distinguish, a crucial experimental signature would be
singularities (in, for example, the dielectric constant or
specific heat) at the continuous transitions into and out of
the new isotropic phase T. Less dramatically, one could
also look for a weakening (strengthening) of the first-
order transition as defects are suppressed (favored).

Lattice gauge theory. —The phase diagram of Fig. 2

was obtained by combining analytical and Monte Carlo
studies of a lattice gauge theory for nematics which in-

corporates in a natural way (a) the local inversion sym-

metry of the nematic molecules, and (b) a variable
suppression of disclinations. Consider coarse graining the
orientational degrees of freedom of a nematic fluid. We
imagine a cubic lattice immersed in the fluid, with a lat-
tice spacing comparable to the nematic correlation
length. A well-defined unit vector S; is determined by the
alignment of molecular axes near site i. Since the indivi-
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dual molecules of the Quid are effectively head-to-tail
symmetric, the choice of orIentation for the vector 8; is

arbitrary. The Hamiltonian of the system must therefore
be invariant under the local symmetry operation S;

—S; for any particular site i.
Now consider the interaction along a link (ij) T.here

are two ways that the local molecular axis can vary be-
tween the two lattice sites —it can interpolate directly
[Figs. 3(a) and 3(b)] or by a large (nearly 180') rotation
[Figs. 3(c) and 3(d)]. To account for this local degree of
freedom we introduce the link variables U;j, which take
on values ~ 1. Each U;j is associated with the rotation of
the molecules which lie in a tube connecting small
spheres surrounding sites i and j, as illustrated in Fig. 3.
If the (smoothly varying) molecular axes between i and j
can be consistently assigned orientations continuous with

S; and SJ, then U). is +1 [Figs. 3(a) and 3(c)]; other-
wise, it is —I [Figs. 3(b) and 3(d)].

By introducing the link variables U;z. , we have ex-
pressed the Z2 invariance of a nematic Auid as a gauge
invariance [12], since for any site i we may invert the spin

(S; —S;) if we also negate all of the link variables in-

volving site i (U;i —U;i). The simplest Hamiltonian
with this local gauge symmetry is

—P& =Jg U;~S;. Si+K g U) U&t, Ut, tU(;,
Iijkl]

(3)

where the second sum is over all elementary plaquettes
ijkl. The first term is a nematic interaction which favors
minimal variation of the director along link (ij) [see Figs.
3(a)-3(d)]. The second term is a defect core energy,
since if the product of the link variables U j around a pla-
quette is negative, then the local molecular axis rotates by
180' as the plaquette is encircled [compare Figs. 1(b)
and 1(c)]. The partition function is the trace of e
over all configurations of both [S;j and [UJj.

Analytic results. —We now analytically determine the
behavior of the lattice gauge theory (3) near the K=~,
K =0, and J=O boundaries of Fig. 2, which then has the
simplest topology consistent with these limits.

For infinite K, the product U'jUjkUk(UI; must be unity
for every plaquette. There is then a gauge in which every

U) is itself unity. Evidently, the partition function for
this case is identical to that for the Heisenberg model. At
K=~, the model thus has a continuous Heisenberg or-
dering transition at the usual critical value of J. This
transition remains in the Heisenberg universality class for

I I
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I I
l ( (b)

FIG. 3. The link variables U;j provide information on the ro-
tation of the local molecular axes between sites i and j.
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with J'= J tanhK. The second term in (5) suppresses
defects. The first-order transition remains for small K.

For J=O the model is a pure Ising lattice gauge theory,
which is dual to the ordinary Ising model in three dimen-
sions [12]. Use of this duality shows that the free energy
per length of an externally imposed defect (as discussed
earlier) should vanish as (K —K, ) " in the limit L, R

At small values of J, the gauge coupling is renor-
malized to K,~= K+J /27, but again the universality
class is not altered.

Monte Carlo results —Monte Carlo sim. ulations [14]
of the lattice gauge theory (3) yield the phase diagram
shown in Fig. 2. These calculations used a standard
Metropolis algorithm on cubic lattices of up to 16 sites
[15]. Define the (manifestly gauge-invariant) tensor or-
der parameter Q ~=S S~ —I/38'~ for each lattice site i
(a and p are vector indices), with magnitude

large but finite K, as shown in Fig. 2. For such K, one
can easily sum over the U;j by expanding the Boltzmann
factor of the first term in (3) as

J2
1+JQU~)S;. Si+ g(U~S; S~)(UktSt, S()+

2
(4)

The only gauge-invariant terms (hence the only ones sur-
viving the trace over the U's) are those in which the links
form closed graphs on the lattice. The coeScient of each
term is the expectation value of a product of link vari-
ables in the pure gauge theory (i.e., a "Wilson loop" if
the graph is a simple closed curve). In the pure gauge
theory, the leading behavior of Wilson loops is known
[12] to be exponential in the length of the loop. We can
use this to trace over the U;j to obtain an effective spin
Hamiltonian which is a nearest-neighbor Heisenberg
model with renormal ized coupling J=Je ', where
a =e . This merely shifts the value of J, (K), without
affecting the character of the transition; there are also ir-
relevant, diminishing multispin corrections.

For K =0 the U j on different links are decoupled, and
tracing over them yields the effective spin Hamiltonian

p& ff
=p ln [cosh (JS; S~ )] [ 1 3]. The leading term is

the Maier-Saupe interaction, which produces a strong
first-order nematic-isotropic transition [14]. Now consid-
er the effect of a small K. In this case, the gauge theory
is in its confinement phase, and Wilson loops decay ex-
ponentially with their area. In the expansion of the parti-
tion function we need keep only graphs which are traced
over in their entirety an even number of times (so the
Wilson loop factor is I), as well as those containing only
single plaquette bulges. These same diagrams are gen-
erated by

J2—pe„= g(s, s )'
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FIG. 4. The free energy diff'erence bF/L between a pair of
12&12XL rectangular prisms with and without externally im-
posed defects, for J=0.5 and L =6, 12, and 16. Below K=0.7,
there is no line tension in the thermodynamic limit.

For randomly oriented spins, q vanishes; for spins
aligned with a common axis, q is unity. Using q we
can find transitions into the N phase.

We have applied finite-size scaling [16] to the transi-
tions shown in Fig. 2. To show that gauge-invariant
quantities exhibit Heisenberg-class critical behavior, we
identify (S) with the magnetization m of a Heisenberg
model, so Q'~ = m, mtt

—m 8,~/3. Then

((trQ ) )L (m )L
g(L, t)—= z 2

=
2 4

=g(Lt'), (7)

where Q'P=N 'QQ;~. The last equality in (7) is a
standard finite-size scaling result. The critical coupling
and the exponent v of the equivalent Heisenberg model
can be determined by using this equation.

To bring P to light we use another standard scaling re-
lation, m =L~t'f (Lt "). Assuming J is not too much
below J„we have q —Q —m, so that

(q') = L't' "f(Lt') . (8)

We have verified (7) and (8) for K as small as 0.78.
In a finite system, the delta function in the specific heat

found at a first-order transition becomes a rounded peak
whose height is linear in the volume of the system. We
have observed this behavior for values of K as large as
0.70, and have also confirmed a double-peaked order pa-
rameter distribution [15].

The line IM between the two isotropic phases 2 and T
can be found by studying the effective string tension
8F/L, as discussed in th'e introduction (see Fig. 4). This
is consistent with an analysis of the specific heat [15].

I n conclusions, the first-order character of the ordering
transition in nematic systems has been linked with the be-
havior of topological line defects. Surprisingly, we find
t~o different disordered phases which are distinguished

by the free energy cost of inserting an additional line de-
fect through a finite sample. In the context of a lattice
gauge theory for nematics which incorporates a variable
suppression of defects, we find that the first-order
nematic-to-isotropic phase transition can be split into two
continuous transitions in the three-dimensional Ising and
Heisenberg universality classes, respectively. These new
transitions and phases in nematic liquid crystals should be
accessible experimentally.
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Note added. —P. Poulain, P. Richetti, and D. Roux
have observed what appears to be critical opalescence at a
transition between two isotropic phases in nematic/
polyball m ixtu res.
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