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Nonlinear Dynamics of the m = I Instability and Fast Sawtooth Collapse
in High-Temperature Plasmas
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A theory is given for the nonlinear dynamical evolution of the m =
1 instability, governed by a general-

ized Qhm's law that includes the Hall term. An island equation is derived for the entire nonlinear evolu-
tion which includes an almost explosive growth phase followed by a rapid decay phase. The predictions
of the theory are compared with recent numerical results and experiments.
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In the seventies, essential features of the observed
sawtooth collapse in tokamaks were accounted for by the
Kadomtsev model [1]. Kadomtsev, who gave a heuristic
theory for the nonlinear evolution of the m =1 kink-
tearing instability, demonstrated that in the nonlinear
phase, the instability causes reconnection at the q =1 ra-
tional surface on the characteristic Sweet-Parker time
scale [21 re =(r~rR) ', where r~ is the Alfven time
scale and rR is the resistive diA'usion time scale. For
most tokamaks operating during the seventies, the time
scales rz and rR were typically of the order of 10 s

and 10 ' s, respectively, which gave r~ —100 ps, in

agreement with the sawtooth collapse time then observed.
In larger and hotter tokamaks such as JET [3] and

TFTR [4], the Kadomtsev model predicts a time scale r t;
which is 1 to 2 orders of magnitude larger than the ob-
served collapse time. (It is not uncommon in these de-
vices to obtain collapse times rg —20-100 ps whereas
rtr —2-10 ms. ) This discrepancy has stimulated consid-
erable theoretical research, and at present it is widely be-
lieved that the nonlinear evolution of the m =1 mode in

the collisionless (or semicollisional) regime that charac-
terizes high-temperature plasmas can account for the fast
sawtooth collapse. In recent calculations, instead of clas-
sical resistivity which provides the dissipation mechanism
in resistive magnetohydrodynamics (MHD), one invokes
other mechanisms such as electron inertia [5-7] or
hyper-resistivity [7,8] or both [7]. While all of these cal-
culations predict fast sawtooth crashes, they do not ac-
count for the time development of the growth rate, known
otherwise as the "fast trigger problem" [9-11].

The fast trigger problem is concerned with the onset of
the sawtooth collapse. The issue that remains essentially
unresolved in the calculations cited above is the mecha-
nism by which a sudden and spontaneous transition
occurs from the sawtooth ramp phase to the collapse
phase.

Aydemir [12] has recently reported nonlinear computa-
tional results based on the four-field, two-Auid equations
of Hazeltine, Hsu, and Morrison [13]. These results, we
believe, represent a significant step in developing a more
complete understanding of sawtooth oscillations. One of
the striking features of Aydemir s simulation is a strong

nonlinear enhancement of the growth rate of the m=1
instability over its linear value [6,14-17]. This nonlinear
enhancement occurs suddenly, indeed almost explosively,
after which the growth rate decreases rapidly from its
peak value to zero as the reconnection is completed. The
geometry of the separatrix is reported to change from the
Y points [18,19] that characterize a resistive MHD island
to an A point, which leads to the fast reconnection ob-
served in the simulation.

In this paper, we propose an analytical model which
explains the salient features of Aydemir's simulation, and
provides a solution of the fast trigger problem for
sawtooth collapse. The generalized (collisionless) Ohm's
law can be written as
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where Vtf:Bf/rlz+ [y,f]/BT, [f,gl—=z V+&&V~g, v
=z && Vp, & =BTp/c is the electrostatic potential, and

where E is the electric field, 8 is the magnetic field, v, is
the electron flow velocity, J =(c/4tr)VxB is the plasma
current, m, is the electron mass, e is the electron charge,
n is the electron number density, and p is the electron
pressure. The last term on the right-hand side of Eq. (1)
is the so-called Hall term, the efTect of which on the non-
linear m=1 instability is the main focus of this paper.
Though the Hall term cannot break field lines, it never-
theless has a profound inAuence on the dynamics of the
instability because it introduces a new spatial scale, of the
order of the ion gyroradius p;, which is the spatial scale
of the parallel electric field E~~ near the singular layer.
The spatial scale of J~~ is much narrower, of the order of
the skin depth 6—=c/tot„.

We write 8 =BTz+ z && V& y, where BT is the (con-
stant) toroidal field, z is the unit vector in the toroidal
direction, and y is the poloidal Aux function. In the
four-field model [13],the parallel component of (1) gives
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j=(c/4tr)V&y. Since we are considering the nonlinear
evolution of a single Fourier mode (m =1, n =1), it is
convenient to introduce a helical angle 0 —z/R, where 0
is the poloidal angle in the standard cylindrical coordi-
nates (r, e,z), and R is the major radius. We define the
helical field B~ =zxV&y+, where y~ is the helical flux
function. Note that B+g=Bg(1 —q) vanishes at the

q =rBT/RBg= 1 rational surface .We can write t)/|Iz
= —R 'tl/t) 0 = —(Bg/rBT )8/80, and (a) (b)

Viip B*g t)p
ne BTr,ne t)0

where r =r, is the radial location of the q =1 surface.
From the continuity equation, we get [19]
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where 6, is the width of the current sheet, O'= ~ Op desig-
nate the poloidal locations of the two tips of the m =1,
n =1 island [Fig. 1(a)], vp=vg(ep), 0'=tr —0, and up
= t „(e'=0).

We now use the parallel component of the force bal-
ance condition along the sheet, which gives tl/t)0(pvg +p)
=0 [19]. Integrating (3), we obtain
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With these definitions, the left-hand side of (2) can be
written as c dy~/dt

From flux conservation in the exterior region, we have
dy~/dt =v„B+g. It can be demonstrated that in the non-
linear phase of the instability, the Hall term Viip/ne gives
the dominant contribution to the radial flow velocity at
the spatial scale p; near the singular layer. We denote by
v, the radial flow caused by the electron inertia term
[5,20]. Then

i v, i
—(6/p;) i t, i. Since p; ))6, we have

iv, i
« iv„i. Consequently, Ohm's law (2) gives [2,21]

dx Xo
X

dt sin Op
(8)

We shall demonstrate later that sinep= (to~/0;) '

Equation (8) then implies that x —1/(t, —t), where t, is
a positive constant. As t t„an explosive growth of the
island tends to occur. We propose that this fast blowup
in time accounts for the sudden onset of the sawtooth
crash. This fast blowup should be contrasted with the
slow algebraic growth of a nonlinear resistive MHD is-
land for which w t [18—, 19].

It should be noted that the finite-time singularity pre-
dicted by (8) is not realized in practice. This is because
Eq. (8) relies on the thin-island approximation, w/r, «1,
which breaks down when the island size becomes a
significant fraction of the plasma radius. Furthermore,
this process is so strongly time dependent that it is not
possible to treat the nonlinear evolution of the instabil-
ity as a sequence of neighboring equilibria [18,22-24].
Rather remarkably, however, this evolution can be under-
stood by introducing a simple correlation in the expres-
sion for y~.

As in Ref. [22], we label flux surfaces by their radial
position in the equilibrium configuration. If we define
x =r —r„ then the helical flux function can be labeled by
xp =rp r„where rp is the position of the unperturbed
flux surface. We then have

FIG. l. (a) Schematic plot of Y points in the early stages of
the nonlinear evolution of the instability. (b) Schematic plot of
the X point that tends to form in the explosive phase of the in-
stability. Note the distortion from circularity of the inner sur-
face.

From (4) and (5), it follows that

upsinep =vp/2n;r, , (6)
y, = —,

' yp'xp' = —,
' yp'[x+((x, e)]',

6 =vp/2fl; . (7)

Defining x =w/2r„v~ =B~/(4tr—nm; ) ', to~—=v~/r„and-
)p —=cup/0;, Eq. (6) yields

where 0;=eBT/m;c is the ion L—armor frequency. As
shown by simple geometric considerations in Ref. [19],
up= —,

' dw/dt, where w is the width of the island and
vp =B~g/(4trnm; ) 't . It can also be shown that B+g=

i I/fp (l'z) iw/2=B„w/2r, where yp (r, ) = —Bg(r, )q'(r, )
and B~—= imp'(r, ) ir, . From (4) and (6), we get

where g(x, e) is the radial displacement of the flux sur-
face from its initial position. We take ((x,e) =(cose
with (=0 for x )0, and (=const for x &0. In Fig.
l(a), the outer branch of the separatrix is given by
x, =xp(r, +w/4) =w/4. The inner branch is given by
x;+(cose=xp(r, —w/4) = —w/4, or x; = —w/4 —

g
&cose. Then w =2(. An X point tends to form at the in-
tersection of the inner and outer branches, with coordi-
nates x =w/4, O=tr. At this point, the exterior region
solution exhibits a current singularity and a jump in the
helical field given by d,B+g

= lid'[w/4 —( —w/4) ]
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where yp is the flux function in the initial cylindrical
equilibrium. Expanding the right-hand term in (10), we

get

Bgg= ((r, —() =Bp I—I
yo'I w

rs
' 2r, 2rs

=
2 yp'~. The tendency for X-point formation is depict-

ed schematically in Fig. 1(b), and is consistent with the
numerical results reported by Aydemir (see Fig. 2 of Ref.
[12]). Note also that the inner flux surface in Fig. 1(b) is

deformed from its initially circular shape. This is indeed
what is seen in Aydemir's simulation [12] as well as ex-
periments [4].

The slowing down of the nearly explosive growth of the
island occurs due to the reduction in the magnitude of
B+g from the value B+g=B~w/2r, . This reduction can be
calculated from the relation [22]

—]/2
dx -2x'(i —x)'" —i+x4
dz $p

(is)

E
=

E p denotes the time of onset of the nonlinear phase
which follows the linear phase. In order to estimate
w(tp), we note that in the simulation of Ref. [12] there is
little deviation from the linear growth rate yl in the early
nonlinear phase of the instability. We, therefore, set
y(tp) —yL —0 5r.g~(b/r, )(p;/8) [6,14]. (Note that the
multiplicative factor 0.5 in yl is necessary because we are
considering here the growth of the island which grows
half as fast as the perturbed magnetic field. ) For JET,
with BT=3 T, n; =3x10' /m, R =3 m, we have co~
= (v~/R)q'r, =4 && 10 /s, I p —10 /s, and consequently
y(tp) —I px(tp) =O. I to~w(tp)/r, . This, in turn, means
that w(tp) —0.9 cm since 8—0. 1 cm and p; —0.3 cm.
Taking r, =0.3 m, we obtain t, —70 ps.

An equation for the entire nonlinear evolution of the is-
land can be obtained using Eqs. (6), (11), and (12). We
get

The distance between the inner and outer surfaces bound-

ing the island is given by
0.05 ~

W W 20d(H) =—— ———gcosH =wsin —.
4 4 2

(i 2)
0 04-

If h, & d, a thin sheet current encompassing two distinct Y
points at O'=x —O= ~Op persists, where Op is deter-
mined by the relation d(Hp) =A. This relation gives A

=w sin Hp/2. Since, by (7), t) =(cpz/40;)w, and typical-
ly A;)) co&, we have
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which yields x =I/I p(t, —t ) with t, =2r, /I pw(t p), where

as asserted earlier. We now demonstrate that even as the
angle Op becomes small due to the effect of the Hall term,
the current sheet is still characterized by the property
that its (poloidal) length L is much larger than its (radi-
al) width t), as in the Sweet-Parker model [2]. To see
this, we note that L =2r, Hp and 5 = Wsin (Hp/2). (For a
resistive MHD island, Hp=tr/3 and W «r, [18,19]; hence
A«L. ) For very small values of Hp, since 6 =WHp/4,
6/L —WHp/8r„and W' (r„ the smallness of Hp implies
that h, &&L. Thus, what is realized in the simulation dis-
cussed in Ref. [12] cannot be called, strictly speaking, an

X point. Rather, what occurs is that the strip connecting
the two Y points shrinks drastically as the island width
increases.

For thin islands, Eq. (8) gives
]/2
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FIG. 2. (a) The nonlinear growth rate for the island width

predicted by theory. (b) The nonlinear growth rate obtained
numerically in Ref. [121. The physical parameters and initial
conditions for this calculation are somewhat diA'erent from
those used for (a).
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of y
' obtained from the slope of the plot in Fig. 3(a)

during the final stages of the near-explosive growth is ap-
proximately 15 ps which compares well with the experi-
mentally observed value of 25 ps. We remark here that
the time scale of a sawtooth collapse depends on co~
which in turn depends on the local magnetic shear. Some
of the extreme sensitivity of the observed sawtooth time
scales to the current profile, seen, for instance, in TFTR
[4], may be attributed to the variation in the local mag-
netic shear at the q =

1 surface.
This research is supported by the U.S. Department of

Energy Grant No. DE-F602-92ER54168.
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FIG. 3. (a) The displacement of the plasma predicted by
theory. (b) The displacement as inferred from the peak soft-x-
ray emissivity in the JET device reported in Ref. [11].

Equation (13) is integrated with the initial condition
w(tII) =p; and the JET parameters cited earlier. The
nonlinear growth rate y is plotted in Fig. 2(a). [For con-
venience, we have chosen ro=O in Fig. 2(a).] Figure
2(b) is the analogous plot given by Aydemir [12]. We
emphasize only the qualitative similarity between Figs.
2(a) and 2(b); the two plots do not correspond to identi-
cal physical parameters or initial conditions, and show
some quantitative diAerences.

Figure 3(a) is a logarithmic plot of the displacement g
versus time which resembles closely the plot of the peak
soft-x-ray emission for three sawtooth collapses, reported
in Ref. [I I], and reproduced here as Fig. 3(b). The value

where ~=m~t and yo has been normalized by m~. We
define the nonlinear growth rate

i —]/2

7'= Inw=2x(I —x) l —1+x
dT
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