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Vector Order Parameter for an Unpolarized Laser and its Vectorial Topological Defects
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We consider the full set of equations ruling the interaction of an electromagnetic field with matter in a

laser, without assuming that the direction of the transverse electric field is fixed. Near the lasing thresh-

old, we reduce the dynamics to its normal form equation, and show that the electromagnetic field can be
described by a Ginzburg-Landau equation in a vector form. Then by using topological arguments we

show the possibility of vectorial topological defects which are not predictable by the scalar theory.
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The semiclassical description of the laser dynamics
brings into play the wave equation coming from the
Maxwell theory for a dielectric and two other equations
describing, respectively, the behavior of the dipole polar-
ization and the inverted atomic population. Most of the
papers dealing with lasers also assume that the direction
of the electric field is constant, and reduce the dynamics
to its scalar form. This assumption, widely justified by
the common technological designs, together with the
slowly varying envelope approximation, leads to the well-
known Maxwell-Bloch set of equations [1]. Recently this
model has been studied by normal form equations, new
solutions have been predicted [2] and observed [3], and
the relationship between nonlinear optics and the complex
Ginzburg-Landau equation has been proved in a general
way [4]. Now in the same way that the optical vortices
predicted by Ref. [2] were a nonlinear version of the
linear singularities discussed by Berry, we are interested
here in the nonlinear version of the topological vectorial
defects of an electromagnetic wave studied by Nye and
Hajnal [5]. Therefore the aim of this paper is to derive a
normal form equation for the Maxwell-Bloch model,
keeping in mind the vectorial nature of both the electric
field and dipole polarization, and to exhibit typical non-
linear vectorial solutions that cannot be predicted by the
scalar theory. From a mathematical point of view, the
computation we perform here is a true codimension-one
bifurcation, bringing into play two complex order param-
eters which are covariant by space rotation.

The interaction of an electromagnetic field with the
matter can be modeled by [61
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as the Lorentz model for an atom [7]. Although this
equation is not derived from the quantum mechanics of
two-level systems, but from a purely classical approach, it
takes into account the most significant features of real
atomic transitions [8]. Especially the fact that (1) can be
reduced [6] via a slowly varying envelope approximation
to the quantum mechanically correct Maxwell-Bloch set
of equations ensures that both quantum and classical
descriptions will lead, at least at leading order, to the
same final results. In this model, po is the magnetic sus-

ceptibility, c is the speed of light, 4' is a damping term
associated with the losses (including the mirror losses
[9]), while y& and y~~ are decay rates of the material vari-
ables. Aco, is the energy gap between the two atomic lev-

els, g is a coupling constant between the electric field and
the population inversion, and Do is the pumping term.
priori m is the electric field frequency, very close to the
atomic frequency, and in what follows we wi11 assume
co=a, . Also we consider a laser with a transverse cross
section large enough to allow the occurrence of spatial
structures.

E=0, P =0, and D =Do is an obvious solution, stable
for Do smaller than a critical value Do, =4'y~/poc g.
When Do =Do„ this basic solution is unstable with

respect to traveling waves lasing with frequency m, and
critical wave vector k, =+ co,/c. The direction of propa-
gation k, /k, is not defined, but we suppose that the
geometry of the laser medium or mirrors selects the lon-

gitudinal direction (z) [10]. Considerations will be limit-

ed to only the right traveling waves (k, =k,z), though a
priori both directions of propagation are equiprobable
(ring cavity model). As usual in nonlinear physics [10], a
perturbative nonlinear analysis is performed near the
laser threshold by introducing a small parameter defined

by Do =Do, + e Do (e((1). Then the development
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E, P, and D are real quantities which correspond, respec-
tively, to the electric vector field, the dipole polarization
vector, and the population inversion. Note that the equa-
tion for the polarization we have used is often referred to
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and where A is slowly varying in space and time (X =ex,
V=ey, 2 =@ z, T=c t), is a solution of (1) up to order
e, provided that the following solvability condition is
satisfied:

t1,%=z)$+z,V~X —z3($ S*)S—z4(% S)S*,
(3)

where z 1
=c~+i Acz —4 c3, z2 = (2c3A —icz)/2k„z3 c4,

and z4=C5.
Now we want to perform a general study of Eq. (3),

without restricting ourselves to the realistic laser values
of the coefficients z; [14]. In what follows we only as-
sume that the real parts of z~, z2, and z3 are positive as
this is already the case for a laser above the threshold.
Then the usual scaling transformation [15] leads to
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with gJ z. Now in order to be able to predict the ex-
istence of topological defects, a rough description of the
geometry of the set of solutions (1) is needed [16]. Sym-
metry considerations are helpful to provide a global char-
acterization of S. For example, in our case, because of
the gauge and space rotation symmetries, we know that
the set of solutions (S) is globally invariant with respect
to the following transformation:
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Equation (2) is the 3D vectorial Ginzburg-Landau equa-
tion ruling the behavior of the electric field in a dielectric.
It looks like those obtained in hydrodynamics for the
description of the slow space and time behavior of a con-
vective pattern [10], except that it is now a vectorial
equation and the nonlinear part is split into two terms
[11]. This equation also possesses strong analogies with
the vectorial nonlinear Schrodinger equation used in plas-
ma physics to describe the envelope behavior of an elec-
tromagnetic wave [12].

Several further assumptions are needed to simplify Eq.
(2). First, following the assumptions of Ref. [13] (i.e.,
uniform field limit and a large free spectral range), we
can extract the longitudinal dependence of the amplitude
2 with

A(X, I,Z, T) =S(X,V, T)e

1+aP&0, 6&0,
and for (II)
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the sets S& and St& defined by

(5)
where p and y are arbitrary real and constant values.
Therefore, as
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,0,
are homogeneous time periodic solutions of (4), stable,
respectively, for (I)

Second, for the sake of simplicity, we restrict ourselves to
the case where 6 is positive such that the fourth-order
derivative is not needed anymore (the case A (0 gives
qualitatively the same results but is more complex).
With these hypotheses the normal form equation can be
expressed as

S; =[Gp(R~(B;)),(P, y) & [0,2'] x [0,2tr]], i =I,II,
are subsets of S with, respectively, the circle
[G~(S&) =R~(S&)] and the torus topology. Note that
they correspond, respectively, to a circular and a straight

l

polarized electric wave,
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Topological defects are associated with phase transi-
tions and are characterized by their asymptotic connec-
tion with solutions which can be exchanged by symmetry
transformations [16]. For example, a point topological
defect with a core localized at point P, and associated
with Srr and the phase ltd, is a solution of Eq. (4) which
connects asymptotically some elements of S&& in such a
way that the phase tt used to generate S«varies by +2'
( —2ir) along any closed line (I ) surrounding the point P
(Fig. 1(c) [Fig. 2(c)]). In what follows we will use the
notation (Err, ltd, +) [(Srr, ttr,

—)] to refer to such a defect.
Far from this defect core, a good analytical approxima-
tion of the electric field is then given by

cos [[ru, —(p+ tI )/(1 + 8)] r —(k, +6)z +@(r,B, t )j
(1+8)' '
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—sin(yrt), with f~ VN. dr =2m,

0

j rt ~--.

where (r, B) are the polar coordinates associated with the
point P, and yrt an arbitrary constant [we have used
yrr=4tr/11 in Figs. 1(c) and 2(c)]. When the phase y is

involved in the definition of the defect, as for example in

(Srt, y, +) [Fig. 1(d)], the corresponding analytical ex-
pression is then
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The exact shapes of the functions + and + cannot be ob-
tained from topological arguments because they depend
on the defect core [17]. It is worth noting that, as % is a
very smooth function (obeying a partial diA'erential equa-
tion), each defect core, which is either a phase ltd or y
singularity, must correspond to a vanishing of the mod-
ulus of the electric field. There is then no singularity for
E and no magnetic monopole.

2 priori, using the sets of solutions Si—,Sii and the
symmetry transformations (gauge, rotation, gauge+ rota-
tion) of Eq. (4), twelve distinct topological defects can be
built. They ~i-e

(St, t'ai
~ ), (+tt y ~ ), (+tt, P ~ ), (&tr, ttr, ~, y, +' ) .

It is usual to group the defects by pairs (defect-anti-
defect), corresponding, respectively, to a phase circula-
tion equal to 2z and —2x. From a theoretical point of

~ +my'+ ~
P

FIG. 1. Defect solutions: (a) (Sr+, P, +), (b) (Sr,P, +), (c)
(A'rr, tt, +), (d) (4'rr, y, +), (e) (Srr, y, +,p, +), and (f)
(gri, y, —,p, +). For type-I defects, we have chosen t and z

such that (co, —P)t —(k, +A)z =0, while for type-II defects
Itu, —(P+it)/(I+b)]t —(k, +A)z =0. In all the pictures, the
straight black arrows stand for the electric field vector, and the
dashed curves with a spiral shape are isophase p lines. The
length of the arrow is proportional to the norm of the electric
field, but consideration has been limited to the region far from
the defect core such that the vanishing of ~E~ at the core is not
visible. For (a) and (b) the time evolution has been represented
by the small arrows with a circular are shape. For (c), (d), (e),
and (f), the direction of the electric field is stationary; only the
projection oscillates with time (see text).
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FIG. 2. Antidefect solutions: (a) (Sr+,
tran,

—), (b) (Sr, rs,
—),

(c) (Srr, rt, —), (d) (Srr, y, —), (e) (Srr, y, —,tt, —), and (f)
(&rr, rt, +, rt,
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view, this regrouping is associated with the creation and
annihilation process, but in our case, because Eq. (4) is
invariant under a parity symmetry transformation, this
classification gives rise to some practical applications.
Indeed with the parity transformation (x,y) — (x, —y),
a phase circulation of 2n is exchanged into T- 2z, that
is to say, that a defect solution is exchanged into an an-
tidefect one. This is the simple geometrical transforma-
tion which has been used to deduce the antidefect solu-
tions of Fig. 2 from the defect pictures of Fig. 1. Note
that, as might be expected, we recover [Fig. 1(c) or Fig.
2(c)] the topological solution called an optical vortex
which was previously predicted in the framework of the
scalar theory. Using a second-order space and time
finite-diA'erence scheme [18] and periodic boundary con-
ditions, we have simulated Eq. (4) on a massive parallel
computer (Connection Machine), and have numerically
checked that all these topological solutions do exist for
the range of parameters for which the asymptotically
connected solutions are stable [i.e., conditions (6)]. Now
three remarks are in order. First the higher-order terms
which have been neglected in (2) or (4) may be impor-
tant. However, as they are invariant with respect to the
symmetry transformations (5), they do not modify the to-
pology of S and therefore the existence of topological de-
fects. Only the nature of the asymptotic solutions may be
aAected. Second, in the same way that it has recently
been shown that the classical optical vortex can be under-
stood in terms of Gauss-Laguerre modes [19], it may be
possible to analyze some of the vectorial defects in terms
of the usual waveguide modes [for example, Fig. 1(e) has
similarities with the TMol mode]. Third, though all these
various defects correspond to dark spots in a time-
averaged intensity plot, it should be possible to identify
and characterize them experimentally, by interference of
the defect field with either a linearly or a circularly polar-
ized plane wave.

In conclusion, we have been able to reduce Eqs. (1) to
their normal form, vectorial Ginzburg-Landau equation
near the threshold of the lasing action and we have
proved the importance of this description by exhibiting
some beautiful and interesting solutions which cannot be
predicted by the scalar theory. However, there are still
many open questions. For example, analogous to the usu-
al phase p Benjamin-Feir instability regime [20], we can
expect the vectorial equation to possess a phase y insta-
bility, characterized by the lack of correlation in the
direction of the electric field. Another question is the in-
teraction between distinct defects and their respective
role in the two-phase instability regimes. Work in this
direction is in progress.
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