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Effects of Intramolecular Dynamics on Nuclear Fusion Rates and Sticking
from Resonant States of the Molecular Ion dt's
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Several resonances of s symmetry in the continuum of the muonic molecule dt's that cluster below the
(tp)2, +d threshold have been analyzed. It has been found that the fusion rates for some of these states
are comparable with their Coulomb decay rates, and that the associated sticking probability is approxi-
mately 1 order of magnitude lower than that of the ground state. This feature indicates that muon-
catalyzed fusion might proceed more efhciently if it were occurring from the resonant states formed
from the excited (n =2) states of muonic atoms.

PACS numbers: 36.10.Dr, 25.45.—z

Negative muons may be used as a catalyst to fuse hy-
drogen nuclei into helium. The necessary confinement of
nuclei is obtained on a microscopic scale by chemical
bonding within "exotic" muonic molecules such as dtp.
The fusion energy released by muon catalysis exceeds the
rest-mass energy of participating muons, which has pro-
voked a great deal of attention and extensive theoretical
and experimental studies; for reviews, see, e.g. , [1,2].

A single muon can catalyze many fusion reactions via
spontaneous and recurrent formation of muonic mole-
cules in D2+T2+DT mixture. The number of fusions Y
catalyzed by a single muon is inversely proportional to
the probability of muon loss, mostly by natural decay and
by a capture after fusion reaction: Y= [r,/ro+ (1
—R)to, ] ', where r, is the cycling time between con-
secutive fusions, F0=2.2 ps is the lifetime of the muon,
m, is the branching ratio between reactions dtp ay+ n

and dtp a+p+n (known as the sticking fraction), and
R is the probability of collisional stripping of a muon lost
by a capture (R varies from 0.28 to 0.34 in the range of
typical mixture densities between 0. 1 and 1.2 of liquid
hydrogen density [3]). For high cycling rates (r, (( rp)
the cumulative eA ectiveness of muon-catalyzed fusion
(pCF) becomes Y= 1/(1 —R)to, and is hampered by the
intrinsic value of sticking fraction cu, .

The sticking fraction from a given molecular state is
mostly dependent on the heat of the nuclear reaction,
17.6 MeV [4]. If fusion must proceed via bound states of
the dt's molecule, intrinsic sticking appears to have a
fixed "God given" value to, =0.886% (or w, =0.917% in-

cluding nuclear force eA'ects) [5].
Recent calculations have established the existence of

three-body resonances in

dt's

[6-10]. In the present
Letter we present an analysis of the fusion rates and ap
sticking probabilities for a few of the resonant states that
are below the (tp)2, threshold of the muonic molecule
tdp. We show that three-body resonances constitute a
class of fast fusing states with low sticking fractions (as
compared with the same properties of the ground state).
We demonstrate that the sticking fraction is strongly
dependent on the properties of the molecular state lead-
ing to fusion, and that the resonant states provide an ex-

ample of a situation where the Coulombic forces in the
low energy initial channel "modulate" the properties of
the highly energetic final state with energy determined by
the nuclear reaction.

The resonant states in question may be formed by the
mechanisms considered in the bound state formation, the
new features being that the initial state is in the (tp)z,
+d molecular continuum, and that the formation en-
trance width is dictated by the width of the truly metasta-
ble state dtp* [which removes the formal diIIiculty of the
molecular formation via the dtp(1, 1) state whose width
is 0 [11]l.

A resonant state can decay via Coulombic interactions
or fusion according to the following reactions:

~tp+d

(dtp)* tp+d, muon transfer, (1)

(dtp)* dp+t, elastic decay,
~a+n+p

(dt's)* a+n+p, fusion without sticking,

(2)

(dt's)* ap +n, fusion with sticking. (4)

We focus on establishing the ratio of the rate for
Coulombic decay to the rate of nuclear fusion, tv=&f/) 4
(with XI=i,~„+„+k,„+„and Xq =Xq„+,+X,„+q), and
the sticking fraction, to, =X,„~„/(X,„~„+X„+„+„).

The resonances reported here were obtained by means
of a variational calculation within the framework of the
complex coordinate method (CCM). The details of the
CCM can be found elsewhere [12], here we will only
mention that one studies the spectral properties of the di-
lated Hamiltonian H(ri) =U(rt) HU ' (tl ) where the
transformation U(ti) is defined as Uf(r) =ti 1 f(tlr) and

g is a complex dilation parameter: q =re'~. The com-
plete three-body Coulombic problem for the dt's molecule
is described by the Hamiltonian [6]
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where r] and I 2 are the muon-triton- and muon-deuteron
distances, respectively, r]q denotes the internuclear dis-
tance, and m„i and m„d refer to reduced masses of the
muon-triton and muon-deuteron systems, respectively,
while the muon mass is denoted by m„. The values of m„
md, and m„are 5496.899, 3670.481, and 206.7686, re-
spectively. The continuous spectrum of the dilated Ham-
iltonian is rotated out in the complex plane by an angle P
around the consecutive thresholds. For the dtp system,
such rotation separates the branches belonging to (tp)„(
+d and (d(u)„(+( thresholds. The bound states remain
uninfluenced by the transformation, whereas the discrete
complex spectrum corresponds to resonances.

The solution of the dilated eigenvalue problem has
been obtained in a discretized form by solving the com-
plex non-Hermitian matrix eigenvalue problem using a
basis of A =356 generalized Hylleraas functions, i.e., as

%(ri, r2, r(2) = g h;rl ' r ' r ' exp( —ari —Pr2 —yr|2) .

(6)
The expansion coefficients h; and parameters a, P, and y
are determined variationally for a given state. Coulombic
cusp conditions were imposed on the eigenfunctions. The
energies and widths of the resonant states (E„=E—ie)
have been obtained as the real and imaginary parts of
those complex eigenvalues which are stable with respect
to variations in the dilation parameter g. The computa-
tional technique is described in Ref. [12].

The resonances seem to cluster just below the (rp)2,
threshold, and their exact number is unknown. The re-
sults for three resonant states that are believed to origi-
nate from the 3o. adiabatic potential are presented in
Table I. The typical lifetimes are of the order of
10 ' -10 ' s and are comparable at the fusion time,
meaning that a certain fraction of resonant states may
fuse.

The fusion rates reported here are calculated according
to Jackson's expression [4],

~f = -', ~, lF(0) l'

f1~(re r(p r rdt 0)l d ('

I I +(rd. , r(, , rd, ) I
'dr

where 2, is the nuclear reaction constant for d-t reac-

TABLE I. Present results for the ground state and three res-
onances of dtp. First column, energy levels; second column,
binding energy with respect to closest threshold. e and id are
Coulombic width and lifetime, respectively; Af is fusion rate.
The notation D ', for example, means &10

tions, 2, = 1.36 x 10 ' cm s ', and 2 is the nuclear
spin statistical factor. The integrand in the above equa-
tion represents the conditional probability for fusion as a
function of muon position, obtained from the three-body
wave function at the point of d-t coalescence. The rate of
fusion from resonant states appears to be surprisingly
large and is comparable to the rate of fusion from the
ground state (see Table 1).

The total sticking fraction is a sum of transition proba-
bilities between the initial state of the tdp molecular ion
and the bound states of the hydrogenic ion ep,

w,o=gw„(,
nl

where w„~ refer to contributions of difTerent hydrogenic
functions p; that describe the final state. M =15 hydro-
genic functions were used, although the contribution from
n ~ 5 was within 1% of the total. In the sudden impulse
approximation the partial sticking fractions are propor-
tional to the overlap between the initial and final wave
functions taken at the point of coalescence of d, t, e, and
n (neutron),

w„( =g „d r R„*((r)Y(* (O, p)e 'q't(f(r)

= (2l + 1 ) 4(r„r dr r R„((r)j ((qr )y(r )

where q =6 0626 muonic units is the effective recoil
momentum obtained by using energy and momentum
conservation in the fusion reaction, derived through rela-
tivistic considerations (see details in Ref. [13]). R„((r)
and Y( (9,&) refer to radial hydrogenic wave functions of
op and spherical harmonics, respectively, labeled by prin-
cipal and orbital quantum numbers r(, l j((qr) is. the
spherical Bessel function. y(r) =+(r» =—rd„=r, rd, =0) is

the three-body wave function evaluated at zero internu-
clear distance and then normalized, which will be called
the collapsed wave function.

Values for w, and contributions w„I are presented in

Table II. In order to assess the quality of our solutions
we include also the results for the ground state, and com-
pare them with values reported in the literature. We first
notice that partial sticking in diAerent excited states has
roughly the same distribution for the resonant states and
for the ground state. However, the sticking probability
for the three resonant states analyzed here is consistently
lower as compared to sticking from the ground state. In
order to understand this feature we have performed an
adiabatic analysis of the collapsed wave function y(r).
The three-body wave function can be written in terms of
the general adiabatic expansion as

E (a.u. ) E (eV) e (eV) rd (s) Xf (S ) Xfrd + (rd( rdp r» ) Z 0 (rrp re )Zn (rd( ) (10)
—0.558 854
—0.165 182
—0.150764
—0. 139557

—319.138
—217.889
—

1 39.705
—78.937

0.001
0.014
0.033

~ ~ ~ 1.36D12
1.06D —12 0.11D12
0.46D —13 0.83D12
0.20D —13 1.88D12

0. 1 1

0.04
0.04

and the collapsed wave function takes the form

y(r) =g P„(r)g„(0),
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Wnl E= —0.559 E,= —0.165 E,= —0.151 E,= —0.138

W ls
aW]s

W2s
a

W2s

W2p
a

W2p

W3s
a

W3s

W3p
a

W3p

W4s
a

W4s

WOas

0.679D —2
0.683D —2

0.973D —3

0.979D —3

0.236D —3
0.238D —3
0.296D —3
0.297D —3
0.851 D —4
0.860D —4
0.126D —3
0.127D —3

0.879D —2
0.886D —2

0.733D —3 0.905D —3 0, 130D —2

0.114D —3 0.140D —3 0.200D —3

0.247D —4 0.312D —4 0.463D —4

0.353D —4 0.432D —4 0.617D —4

0.91 1 D —5 0. 1 14D —4 0.170D —4

0.151D—4 0.185D —4 0.264D —4

0.964D —3 0.119D—2 0.171D —2

'Reference [13].

TABLE I I. Final state distribution of partial contributions to
ap sticking probability, w„I, and total initial sticking fraction w,
for the ground state and three resonances of dip.

Probability ~ &p~t &r) [ y(r) &
~

Res. state Res. state
1 2Bound state

Res. state
3

1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0

10,0
1 1,0
12,0
13,0
14,0
15,0

0.987D+ 0
0.777D —2
0.137D —2
0.452D —3
0.205D —3
0.111D—3
0.674D —4
0.440D —4
0.304D —4
0.219D —4
0.163D —4
0.125D —4
0.975D —5
0.777D —5
0.630D —5

0.416D+0
0.424D+ 0
0.555D —

1

0.714D —2
0.323D —2
0.177D —2
0.108D —2
0.710D —3
0.493D —3
0.356D —3
0.266D —3
0.203 D —3
0.159D —3
0.127D —3
0.103D —3

0.419D+0
0.455D+ 0
0.361 D —

1

0.569D —2
0.260D —2
0.144D —2
0.881D —3
0.581 D —3
0.403D —3
0.292D —3
0.218D —3
0.167D —3
0.131D —3
0.104D —3
0.844D —4

0.395D+0
0.516D+0
0.638D —2
0.497D —2
0.246D —2
0.138D —2
0.858D —3
0.568D —3
0.396D —3
0.287D —3
0,215D —3
0.165D —3
0.129D —3
0. 103D —3
0.830D —4

TABLE III. Analysis of the collapsed wave function in terms
of its adiabatic and nonadiabatic components.

where g„(0) can be interpreted as the expansion coeffi-
cients of the collapsed wave function Itr(r) into hydro-
geniclike functions of the united He atom: g„—:c„
=&&„(r)

~
y(r)&, &„=R„n(r)Vtiti(0, p) The . coefficients of

such expansion are displayed in Table III.
The manifold [p„]P is quantitatively and qualitatively

diAerent from the original Hylleraas basis (M (N and
the nonlinear exponents are diA'erent). To make the ex-
pansion complete we introduce a remainder p, = y —gc„
x p„, which in view of the bound character of functions p„
is interpreted as the L approximation to the continuous
part of the collapsed wave function.

We call the collapsed wave function y(r) adiabatic if
all c„=g„(0)are 0 except one. The collapsed wave func-
tion for the bound state is almost adiabatic (y=&t~ in

99%, see the first column of Table III). On the basis of
the global properties of resonances (such as energy) one
could expect their wave functions to be adiabatic of 3o

Bound state contribution
0.997D+ 0 0.912D+0 0.922D+ 0 0.929D+ 0

0.287D —2
Continuum

0.881 D —
1 0.776D —

1 0.709D —
1

character, and we therefore refer to &t3 as the adiabatic
component of their collapsed wave functions. Inspecting
Table III one immediately notices the presence of large
nonadiabatic components in the resonant states. Their
collapsed wave functions appear to be mixtures of the 1s,
2s, and 3s orbitals of Hey, with the third largest corn-
ponent coming from the continuum (see columns 2-4 of
Table III).

The presence of large nonadiabatic components in the
collapsed wave function leads to cancellations in the
sticking probability. In order to visualize this, we express
the sticking probability as

w,'=gw =g &v;(e "'gc„&t„=g,g&v;(e "'~c„&t„&&v;~e "'(c„&t„&* —= QQ(n, n'),
I fj n, n' i n, n'

(12)

!
where the summation over n includes also the normalized
component &t, (c, being its norm). The matrix Q(n, n') is
presented in Table IV. For the ground state, there is only
one dominant component Q(1, 1) representing sticking
from the adiabatic component Is [this is sticking in

Born-Oppenheimer (BO) approximation]. The joint ef-
fect of other components is reduction of sticking from its
BO value to the final sticking of 0.879% (see Table II).
We notice that a 1% admixture of nonadiabaticity results
in a change of sticking by 24%.

Sticking from resonant states is composed of few dom-
inant diagonal components [notably Q(1, 1), Q(2, 2), and
Q(c,c)] and several negative oA'-diagonal components,

which leads to cancel1ations. The collapsed wave func-
tion is a linear combination of physically realizable states
representing the system in its united atom limit, with

~c„~ giving the probability of finding the system in these
states at the instant of fusion. The physical predictions
concerning this state will therefore depend not only on
the moduli of c„but also on their relative phases. Hence
the presence of large oA'-diagonal elements can be inter-
preted as a quantal interference effect occurring because
of heavy admixture of nonadiabatic components in the
collapsed wave function. This results in drastic reduction
of sticking, which is transparently seen to depend not only
on the nuclear reaction heat, but also on the intramolecu-
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TABLE IV. Analysis of interference efTects in sticking in terms of the adiabatic and nonadi-
abatic components of the collapsed wave function. The entries represent contributions to stick-
ing given by matrix Q(n, n') of Eq. (12). Only dominant contributions (i.e. , for n ~ 5 and
n=c) are displayed. The off-diagonal elements contain [g(n, n')+Q(n', n)]/2 .Other reso-
nances show the same interference pattern.

2$
E = —0.5588 (bound state)

3$ 4s pc

1s 0. 1 1 3D —I —0.764D —3
2$ ~ ~ ~ 0.129D —4
3$ ~ ~ ~ ~ ~ ~

4$ ~ ~ ~ ~ ~

5s ~ 0 ~ ~ ~ ~

—0.177D —3
0.596D —5

0.690D —6

—0.663D —4
0.223D —5
0.517D —6
0.968D —7

—0.320D —4
0.108D —5
0.250D —6
0.935D —7
0.226D —7

—0.184D —2
0.621 D —4
0.144D —4
0.539D —5
0.260D —5
0.749D —4

ls 2$
E, = —0.1652 (resonant state)

3$ 4s 5s

1 s 0.478D —2 —0.493D —3 —0.429D —3
2$ ~ o ~ 0.702D —3 —0.225 D —3
3$ ~ 0 ~ ~ I ~ 0.279D —4
4s ~ ~ ~ ~ ~ ~ ~ ~

5$ ~ ~ ~ ~ ~ ~ ~ ~ ~

—0.153D —3
—0.286D —4

0.116D—4
0.153D —5

—0.754D —4
—0.124D —4

0.545D —5

0.147D —5

0.355D —6

—0.113D—
1

0.258D —3
0.474D —3
0.176D —3
0.872D —4
0.668D —2

lar dynamics of the state leading to fusion.
The features might lead to an overall decrease of stick-

ing in the cycle of dt pCI if the conditions favorable for
fusion via resonant states could be found. In this respect
we note that the formation rate of resonant states is fas-
ter than the corresponding rate for the bound state by a
factor (d„Jdb,„„d) =25, where d is a characteristic size
of the molecular dipole moment. The formation rates
might be as high as X«„*= 10 ' s ' for resonances in the
range of Vesman formation mechanism, formed in col-
[isions of excited (tp)2, atoms. The fastest deexcitation
mechanism of the (tp)2, states is radiative deexcitation
after admitting Stark mixing (kd„„~8X10' s ') but it
does not exceed the above estimation of the formation
rate.

We suggest that fusion via resonant states might con-
stitute a side path in the main dt pCF cycle. Traces of
such a side path being active might perhaps be seen in-

directly in the form of an effective sticking that is lower
than expected on the basis of the intrinsic ground state
sticking alone. Such an effect is qualitatively in line with
experimental findings originated at LAMPF [141 and re-
fined at SIN [15], and accommodates the agreement be-
tween experimental and theoretical sticking in the ddp
case. Indeed, we have found that the resonances of ddp
have lifetimes of the same order of magnitude as in dtp,
but since the fusion rates are 3 orders of magnitude
smaller the ddp cycle is not expected to be inAuenced by
a resonance side path.

Direct signals of the side path might be found in the
form of energetic products of the resonance decay to the
dissociative tp+d+2 keV and dp+t+2 keV continuum,
but it may very well be that sticking measurements based

on the cycling rate theory including the resonance forma-
tion might be the most accessible way of probing the in-
cidence of the side path.
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