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Critical dynamics constrains models of dynamical electroweak symmetry breaking (EWSB) in which
the scale of high-energy physics is far above 1 TeV. A big hierarchy requires the high-energy theory to
have a second-order chiral phase transition, near which the theory is described by a low-energy effective
Lagrangian with composite “Higgs” scalars. As scalar theories with more than one ®* coupling can
have a Coleman-Weinberg instability and a first-order transition, such dynamical EWSB models cannot
always support a large hierarchy. If the large-NV. Nambu-Jona-Lasinio model is a good approximation
to the top-condensate and strong extended technicolor models, they will not produce acceptable EWSB.
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(1) Introduction.— Much recent work has focused on
top-quark-condensate (and related) models [1-5] as well
as models with strong extended technicolor interactions
[6]. In these theories chiral symmetry breaking driven by
dynamics at a high scale (A>>1 TeV) plays a significant
role in electroweak symmetry breaking. Typically, the
high-energy dynamics is assumed to be a broken gauge
theory—either extended technicolor (ETC) dynamics in
strong ETC models or the dynamics of some grand uni-
fied theory in top-condensate models. The high-energy
dynamics is usually modeled by a local Nambu-Jona-
Lasinio (NJL) four-fermion interaction [7] that is attrac-
tive in the chiral symmetry breaking channel. When the
strength of the four-fermion interaction is tuned close to
the critical value for chiral symmetry breaking, it would
appear possible for the high-energy dynamics to play a
role in electroweak symmetry breaking without driving
the electroweak scale to be of order A.

The argument that high-energy dynamics can play a
role in electroweak symmetry breaking is independent of
the NJL approximation [8]: If the coupling constants of
the high-energy theory are small, only strong low-energy
dynamics (such as technicolor) can contribute to elec-
troweak symmetry breaking. On the other hand, if the
coupling constants of the high-energy theory are large
and the interactions are attractive in the appropriate
channels, chiral symmetry will be broken by the high-
energy interactions and the scale of electroweak symme-
try breaking will be of order A. If the transition between
these two extremes is continuous, i.e., if the chiral sym-
metry breaking phase transition is second order in the
high-energy couplings, then it is possible to adjust the
high-energy parameters so that the dynamics at scale A
can contribute to electroweak symmetry breaking. More-
over, if the transition is second order, then close to the
transition the theory may be described in terms of a low-
energy effective Lagrangian with composite “Higgs”
scalars—the Ginzburg-Landau theory of the chiral phase
transition.

It is crucial that the transition be second order in the
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high-energy couplings. If the transition is first order,
then as one adjusts the high-energy couplings the scale of
chiral symmetry breaking will jump discontinuously from
approximately zero at weak coupling to approximately A
at strong coupling. In general it will not be possible to
maintain a hierarchy between the scale of electroweak
symmetry breaking and the scale of the high-energy dy-
namics A.

In this Letter we show that there are cases in which the
transition cannot be self-consistently second order. A
scalar theory in which there is more than one ®* coupling
can have a first-order phase transition instead, due to the
Coleman-Weinberg instability [9]. Therefore, top-con-
densate or strong ETC theories in which the composite
scalars have more than one ®* coupling cannot always
support a large hierarchy.

(2) UNg)XU(Ny) models.—For simplicity, we first
consider a theory of Ny left- and right-handed fermions ¥
with a chiral U(N,)xU(N,) symmetry. As usual, we as-
sume that the high-energy dynamics is attractive in the
V¥ channel. Therefore, the order parameter ® of chiral
symmetry breaking transforms as an (N;,N;) under the
chiral symmetry. If it is possible to arrange for a large
hierarchy, then at energies below A the dynamics can be
described in terms of a Ginzburg-Landau theory for the
order parameter @ coupled to the fermions:

L=YiDVv+ TVI_;‘% (¥, ®¥g+H.c.) +tr(3*dt5,0)

2 A
- M2tr(®to) —”T—L(mpf(p)z

N}

2 )
-2 22 @)+ 0
3N,

ofop 92

AZ’AZ

. 2.1

The quantities y, M 2, A, and A, are functions of the cou-
plings of the fundamental high-energy theory. This
effective Lagrangian can be considered the theory of a
composite U(N,) xU(N,) Higgs boson ®.

At tree level, if the high-energy couplings can be
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chosen so that M 2< A2, then it is possible to establish a
large hierarchy. This prediction can be affected by quan-
tum corrections: As shown by Coleman and Weinberg
[9], if M? is adjusted to be close to zero, then quantum
corrections can destablize the minimum at ®=0. More
precisely, if one computes the renormalization-group-
improved effective potential and requires that the second
derivative of the potential at ® =0 be small, one finds
that the potential is minimized far away from the origin.
Consequently, if one adjusts the couplings in the high-
energy theory so that M? goes through zero, one finds
that the location of the effective potential’s absolute
minimum jumps discontinuously from ®=0 to some
large nonzero value of ®. In other words, the transition
which at tree level was second order is driven first order
by quantum fluctuations. [The stability of the U(N;)
xU(Ny) linear sigma model, without fermions, was con-
sidered in [10]].

Yamagishi [11] has shown that the condition that the
effective potential be minimized away from the origin can
be stated purely in terms of the couplings A(u) and
A2(u), by following their flows from p = A as the scale u
is decreased. We apply the results of [11] to the La-
grangian (2.1). The effective potential is minimized
away from the origin if the couplings cross the line

4(7\1+}\.2)+ﬂ]+ﬁ2=0 (2.2)
in a region where A1, > 0, A;+X, <0, and
98, >0. (2.3)

4B+ + X B
ij=12  OA;

Here B, and B, are the beta functions for the couplings A,

and A, respectively. We will refer to the line (2.2) as the

“stability line.”

If the couplings never cross the stability line, quantum
corrections do not drive the transition first order and the
high-energy theory may self-consistently have a second-
order transition. However, if the couplings do cross the
stability line, the low-energy effective theory has a first-
order transition and therefore the high-energy theory
cannot self-consistently have a second-order transition
[12].

In practice, of course, one can only compute the beta
functions in perturbation theory. At one-loop order the
beta functions are

2
1 4 |.,, 1 1,,, YN
=— |1+ — [A+ A A+ A3+ —2 2.4
B 121Nf2|312424Nf1
and
2
1 1.,, Y°Ne 3N: 4
= M+ —As+—h,— —p°. 2.5
B 2Nf2;12 P an, 2 8ny (2.5)

(The contributions from A; and A, differ from those given
in [13] and [10]} by a factor of +. We note that in [10]
the complex scalar field is incorrectly normalized and this
explains the discrepancy.) Here N. is the number of
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colors or technicolors of fermions ¥. Note that if y is
constant, the one-loop B functions for the quantities A,/y 2
and Ay/y? are independent of y. The B functions (2.4)
and (2.5) have a fixed point which is the analog of the
fixed point for the Higgs self-coupling noted in [2].

In these theories, typically the Yukawa coupling is
drawn quickly to a low-energy “fixed point” [14,15],
where its value runs very slowly due to the running of a
relatively weak gauge coupling (color or technicolor).
For the purposes of illustration, therefore, we ignore the
running of the Yukawa coupling y.

In Fig. 1 we plot the renormalization-group trajectories
of A1/y? and A»/y? for the model with Ny=2 and N, =3.
These figures show that the couplings A, and A, run to-
ward the fixed point of (2.4) and (2.5) discussed above.
If X, > X, and if both are sufficiently strong at u =A, the
couplings run in such a way as to intersect the stability
line. In fact, these trajectories intersect the line rwice.
One can check that as one scales to the infrared (toward
the fixed point), condition (2.3) is satisfied only at the
first intersection and this intersection corresponds to the
minimum of the effective potential. We have numerically
checked that the picture does not qualitatively change
with a running Yukawa coupling or for different values of
Ny and N,.

In the cases where the two A’s start at reasonably large
values, they run quickly and intersect the stability line
after a small change in u. At one-loop order, the value of
® at the minimum of the potential is equal to the value of
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FIG. 1. The trajectories for the quantities A1/y? and A2/y? in
the U(N,)xU(Vy) model. The arrows indicate the behavior as
one scales toward the infrared. Here we have taken Ny=2 and
Ne=3. Because of the form of Egs. (2.4) and (2.5), this plot is
independent of y. The “stability line” is shown in dashes. Note
that the curves that start at large A, and small A; cross the sta-
bility line twice, and thus have a Coleman-Weinberg instability.
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u at which the stability line is crossed. Therefore, if the
couplings cross the stability line quickly, then (®) is of or-
der A and there can be no large hierarchy.

Of crucial importance, then, is what values the cou-
plings A, (u) and A,(u) take when u=A. This is a non-
perturbative problem. In the NJL model one may show
[2] that to leading order in 1/N,, A;(u)— 0 and A,(u)
— o0 as u— A. This boundary condition puts the
U(Ny)xU(Ny) model in the region which flows rapidly
toward the stability line and therefore suggests that it is
not possible to obtain a large hierarchy. [These predic-
tions will be modified in a generalized NJL model [16].
However, even in generalized models A, (u) — 0 as g — A
to leading order in 1/N.. Therefore, we expect that the
transition will still be first order if A;(A) is not small.]

One may be concerned that we are investigating the
Coleman-Weinberg phenomenon in perturbation theory,
but have been forced to consider potentially large values
of the couplings A. However, since the phenomenon de-
pends only on the qualitative features of the renormaliza-
tion-group flows, we do not expect that higher-order
effects will qualitatively change the conclusions. This is-
sue may be tested by simulating the model (2.1) nonper-
turbatively using lattice techniques. While this has not
been done in four dimensions, numerical simulations in
three dimensions without fermions (where the lowest-
order renormalization-group analysis also predicts a
first-order transition [17]) confirm that the transition is
first order [18].

The point is that it is not sufficient to adjust the cou-
plings of the high-energy theory so that the second
derivatives of the scalar potential at the origin are small.
One will also have to adjust the theory so that, at u = A,
one is in a region of coupling constant space which does
not quickly flow toward the stability line. In a spontane-
ously broken gauge theory with a simple gauge group,
however, having fixed the scale of symmetry breaking one
can only adjust one parameter: the value of the gauge
coupling at the symmetry breaking scale. One cannot,
therefore, simply assume that a large hierarchy of scales
is possible. One must check that the effective low-energy
theory does not suffer from a Coleman-Weinberg insta-
bility. As we have seen, the large-N, limit of the high-
energy NJL model places the U(N,) xU(N,) low-energy
model in a region which has this instability.

(3) Other models.— We now consider some other ex-
amples. Consider first a generic theory without fermions.
As before, we can introduce a field @ to represent the or-
der parameter of chiral symmetry breaking. If the sym-
metry of the high-energy theory is such that the Ginz-
burg-Landau theory for ® has more than one coupling of
dimension four, then, at least in the ¢ expansion, the only
fixed point is the infrared-unstable Gaussian fixed point.
One therefore expects that the couplings generally flow
toward the unstable region, i.e., most trajectories are
pushed away from the origin and flow toward large nega-
tive values of the couplings.

Now consider the theory with fermions. As we have
seen, there will in general be infrared-stable fixed points.
However, if the scalar self-couplings are large compared
to the Yukawa couplings, the coupling constant flows will
(at least initially) look the same as they did without fer-
mions and should, therefore, still cross the stability line.

Accordingly, in a model of composite scalars in which
there is more than one ®* coupling and in which the sca-
lar self-interactions become strong at the compositeness
scale A, the chiral phase transition may not be second or-
der. Such a model will not always sustain a large hierar-
chy between the compositeness scale A and the weak
scale.

In top-condensate-inspired models with two composite
Higgs bosons [19,20], for example, one has five ®* cou-
plings and three mass terms. It can be argued that one
has enough freedom to adjust the three mass terms to be
close to zero, but for the reasons discussed above the
theory can still have a fluctuation-induced first-order
phase transition. Again, if large-N, arguments apply, the
model will not sustain a large hierarchy. (The instability
was noted in [19], but its implications were not dis-
cussed.)

By contrast, the standard O(4) model [1] has only one
quartic coupling. In this case, the ‘“stability line” is a
point, and it is at a Jower value of A than the fixed point.
Therefore, if, as in [2], the value of A(A) is large, then
the trajectory hits the fixed point without crossing the
stability point and it may be possible to sustain a large
hierarchy.

Note that our results apply only in cases in which the
scalar self-interactions become strong at the composite-
ness scale. In composite-Higgs models in which all of the
scalars are Goldstone bosons of some chiral symmetry
breaking transition at a higher-energy scale [21], the non-
derivative self-couplings of the scalars are related to
small symmetry breaking effects can naturally be small at
u=A. Although the transition may in principle be first
order, it may take a very large change of scale before the
couplings cross the stability line since the couplings are
weak. In this case the hierarchy can be large.

Conclusions.—In conclusion, theories of composite
Higgs scalars may have a first-order chiral symmetry
breaking phase transition if there is more than one ®*
coupling and if the scalar self-interactions become strong
at the compositeness scale. One must check that the
theory does not suffer from the Coleman-Weinberg insta-
bility. In particular, in strong ETC models or generalized
top-condensate models with more than one ®* coupling in
the low-energy theory, one may not be able to adjust the
high-energy theory to obtain a large hierarchy between
the scale of the high-energy dynamics and the weak scale.
If the NJL model solved in the large-/V, limit is a good
approximation to the high-energy dynamics, then these
models will not produce acceptable electroweak symme-
try breaking.
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