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Nonperturbative Solutions of String Theory in Gravitational Backgrounds
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We study bosonic string theory in a gravitational background. We show that either left-movers or
right-movers are the only background independent nonperturbative solutions of the field equations for
an arbitrary static metric. They are stable and have a conserved topological charge, therefore being
topological solitons. The action vanishes for these solutions and hence they provide the dominating
contribution in a path integral quantization.
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The study of nonperturbative solutions in classical field
theories has shed light on many features of the corre-
sponding quantum theory since in general these features
cannot be reached by perturbation theory. For instance,
topological solitons indicate the existence of hidden sec-
tors of the Hilbert space while the presence of instantons
indicates vacuum tunneling, showing, in both cases that
a rich quantum structure is available. Since there is no
manageable field theory for strings the only way to study
the interaction of strings is through perturbation theory.
Therefore any nonperturbative solution of string theory
may give some clues about the symmetries or the geo-
metrical foundations of a string field theory.

Another aim of studying strings in backgrounds con-
sists in finding a (low energy) phenomenologically ac-
ceptable string vacuum or consistent compactifications.
However, as is well known, strings do not propagate in ar-
bitrary backgrounds if conformal symmetry is to be kept
at the quantum level [1].

Since we find background-independent solutions con-
forrnal invariance can be achieved by choosing an ap-
propriate background. Plane wave backgrounds [2], of
which shock wave backgrounds [3] are a particular case,
as well as group manifolds [4], are examples of back-
grounds which keep conformal invariance at the quan-
tum level. Recently, a class of space-time metrics has
been proved finite in the presence of the dilaton field [5].

In this paper we study nonperturbative solutions of the
bosonic string theory in a gravitational background field.
We show that closed string left-movers or right-movers
are background-independent solutions, However, not all
coordinates can be taken as right- or left-movers since in
this case the gauge freedom cannot be fixed completely.
In the light-cone gauge (LCG) we find that only left- or
only right-movers are solutions for static, but otherwise
arbitrary backgrounds, and that these backgrounds can
be interpreted as a comoving frame for the string. When
both movers are present the space-time metric splits up in
blocks with two of them still being completely arbitrary.

In fact, all coordinates being either left- or right-
movers corresponds to the only background-independent
solution. This solution is stable under small perturba-
tions. Finally we show that the solutions having only the
string winding mode can be interpreted as solitons and a
quantum soliton operator can be built. Since the action
vanishes for left- or right-movers they give the dominat-
ing contribution to the path integral.

The string action in an arbitrary D-dimensional grav-
itational background G„(p,, v = 0, . . . , D —1) is given
by

S=, do d~~g g ~G„(X)B X"BpX,

where g p (n, P = 0, 1) is the world-sheet metric. The
classical equations of motion and constraints are, respec-
tively,

'X&+r~, g ~a.X @~X' =0, (2)

8 x"+I'"6 x 8 x =0,

T~p = G„BpX"BgX = 0, (5)

where Bg = 8 +8 .
As is easily seen, right- or left-movers, satisfying

8+X" = 0 or 8 X" = 0, respectively, are background-
independent solutions of the field equations (4). The Eu-
clidean version of these solutions has been recognized as
instantons in two-dimensional nonlinear sigma models for
target spaces with nontrivial second homotopy group [6].
In our case, however, there are two more equations to be
satisfied, namely, the constraints (5). As will be shown,
they prove to be very strong, restricting the allowed back-

T p = G„(B XI'BpX —2g pg
~ B X"Bp X )

=0 (3)

where I'~ is the ChristofFel symbol for the metric G& .
In the conformal gauge, (2) and (3) reduce to
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ground space-times.
In two-dimensional Minkowsky space-time, fields sat-

isfying either of the conditions 8+X" = 0 or 8 X" = 0
are known as chiral bosons. They have been studied and
their quantization performed in several schemes [7]. In
the heterotic string theory, left-mover target space co-
ordinates generate the internal symmetry group through
coinpactification on a Hat torus [8], whereas in the con-
text of nonlinear sigma models, chiral bosonic fields —the
so-called leftons and rightons have also been considered
[9]. We shall denote string coordinates of only a mover
type (either left or right) as being "chiral. "

As is weH known the gauge g p = g p still leaves a
combination of reparametrization invariance and Weyl
scaling to be fixed. This freedom enables us to make
a further gauge choice and the light-cone gauge X+ —=

~2(X" + X ) = xo+ + P+~ is taken in order to fix

this residual invariance [10]. In this gauge, however,
the coordinate X+ is no longer chiral. We could there-
fore ask whether it is possible to obtain a solution with
all coordinates being chiral with a gauge choice such as
X+ = xo++P+cr+ (where cr+ = o +7.). Nevertheless, this
gauge does not completely fix the residual gauge freedom
left over by the conformal gauge, namely, cr+ —+8 +(cr+),
cr —+ 8 (cr ), as can be easily checked.

We now turn to study the backgrounds where not all
coordinates are chiral. In order to fix the residual gauge
invariance we choose the LCG with the nonchiral coor-
dinate X+. The LCG choice will afI'ect the equations of
motion (4) where all terms containing X+ will spoil the
possibility of a chiral solution for the remaining coordi-
nates. Starting with a metric such that G++ ——G = 0,
which partially sets the coordinate system [11], we can
require that these various terms containing X+ vanish.
For right-movers this leads to the equations

2 P c)+G+ —+ (&+G, + o),G+ —8 G+, )8 X' = 0,

2P c)+G+, +(&+G, + & G+, —B,G+ )o) X +(c)+G,, +c)~,G+,j)ci X~ =0,
(6a)

(6b)

where &+ ~efers to space-time derivatives (while o)~ refers to world-sheet derivatives). The constraints (5) then imply

»+G+ 8 X-+2P+G+,8 X'+2G, B X-g X'+G,,g X g X~ =0 (6c)

Now we must solve (6) for the various components of
the metric as functions of X+, X, and X'. It turns out
that these equations have a solution for a static (i.e. , X+
independent) background

G~ =g~, G+, ——Bh,
G+ ——8 h, G, =g, ,

(7)

where g,z, g, , and h, are functions of X and X' only.
Notice that, apart from being static, (7) corresponds to
a choice of a coordinate frame, as the following count-
ing of its independent components shows. The spatial
metric g,~ has 2 (D —2) (D —1) independent components
while g, has D —2 and h, one. Altogether they give the
2D(D —1) independent components of a D-dimensional
metric after a choice of a coordinate frame is made.

The static character of the solution (7) stems from the
fact that the chiral coordinates X and X' depend sym-
metrically on the world-sheet parameters o. and w, while
in the LCG this symmetry is absent in X+. Therefore,
an equation of motion for the string coordinates cannot
in principle be satisfied once the background depends on
X+, but must be static. It can also be understood with
the following argument. If we start with a fIat space-time
where there is a closed string with both left- and right-
movers, then we could go over to a curved background
where only one of the movers remains, according to our
solution. As this cannot happen, it means that it is not
possible to curve the IIIat space. Therefore we must have
a static background, or at least a background with a time
dependence that can never reach Bat space. If we insist

on curving the background we would find a solution with
both movers mixed up nonlinearly in order to satisfy the
equations of motion (4) and the constraints (5).

An important feature of our solution is that the center-
of-mass momentum is always equal (up to a sign) to its
winding number, as can be seen, for instance, from the
right-mover

where x& is the zero mode and P' and I' are the mo-
menta and winding modes of the associated nonchiral
string which now appear combined to give what is both
the momenta and the winding number of the chiral string.
This makes the string slip over itself in such a way that
its center of mass is always at rest. In fact, the class
of metrics (7) corresponds to a comoving frame for the
string.

For a relativistic point particle the comoving frame is
defined by [12]

ds = dt —G,~
(X', t)dX'dX~. (9)

Once we go to the proper-time gauge X = P 7 (it plays
a role similar to the conformal and the LCG for the
string), the equations of motion for the point particle
take the form
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X'+ G'"G„,X~ ——G'~a G„X"X'= 0, (10a)
and the point particle constraint, P = m ) becomes

(P')' —G„X'X' = m', (10b)

where m is the particle rest mass. The only background-
independent solution to these equations is X' = 0. To see
this take the partial derivative of the constraint (10b),

(o)gG,, )X'A' = 0. (11)
Thus, (10a) gives c) (G,~X~) = 0, or X~ = G~"Cg, for a
constant CA.. . Substituting in (10b) gives CqCtG"' = etc.
Since G@~ is arbitrary, this identity can only be satisfied
if Cy = 0, or X' = 0. The equation of motion for X
(namely, X'X~c)OG,

&
——0) is consistent with (10b) and

was not directly used in this derivation.
For the string, it can be easily demonstrated, with a

metric of the form

01
G~ (X') = 10

0 G,,
(12)

that either left- or right-movers are the unique back-
ground-independent solutions.

The equation of motion for X+ gives 8 G,~
= 0, while

the equation of motion for X (which is the same as for
the Hat case), for the X', and for the constraints are,
respectively,

8+8 X = 0)

0+8 X'+ —,'G'(c), G~t+ c)~G, (
—atG, I,)0+X'0 X" = 0,

2Z a X = G, O X'a X~.

From (13a) and (13c) one has

(13b)

(13c)

(16)

G,,V~X'o)~X' = E(a.+). (14)
This last equation allows us in fact to have both movers.
To take this into account let us split the coordinates
X' into left-mover coordinates X (c) X = O, A

1, ... ,
D' —1) and right-movers X' (o)+X = 0, a

D', . .. , D —2). Without loss of generality, the cornpo-
nents of the metric G,z can also be split into G~g) G~~,
and G ~. Then from (14) we obtain G~~ as an arbitrary
function of X and similarly for G b, while from (13b)
one gets

(c)~G~b —O~G~b)c) X c)+X = 0 for 'i = A,
(15)

(ObG, ~ —c) Gb~)a Xba+X~ = 0 fori = a.
A local solution for the mixed part of the metric is G ~ ——

0 0~f where f is an arbitrary function of X+ and X' .

The background allowing both movers is then

G~~ = G~~(X~), G b = G b(X ),
G ~=8 O~f(X+, X ).

By substituting (16) in the equations of motion one
does indeed see that this is the most general class of

metric which allows the presence of both movers. Nev-
ertheless, for an arbitrary metric G,~, on, ty the solution
with one of the movers present is allowed. For metrics
of the form (7) the chiral solution is also unique. This
stems from the fact that an arbitrary background of type
(7) is more general than an arbitrary background of type
(12).

Now we turn to the study of the stability of the solu-
i;ion. Since our solution can be regarded as, say, a right-
mover closed string with its center of mass at rest in a
comoving frame we have to look for small perturbations
which can grow up with time ~ or small perturbations
which can change the chirality of the string, The ques-
tion of stability can then be posed as a problem of finding
the eigenvalues w for a perturbation f (o) with small co-
efFicient A,

X'((r, 7.) = X'((7 —7) + A f ' (o.)e ' (17)

the eigenvalue equations decouple and we get f(cr)
e' with m real. Then the perturbation does not change
the character of the solution (it remains a right-mover)
and we conclude that the solution is stable under small
perturb ations.

Besides having zero action, which means a large con-
tribution to the path integral, another important fea-
ture of the chiral solution in curved space is its solitonic
character. The modes of the string are not affected by
the presence of the background, a behavior that resem-
bles solitons. The same occurs with the winding mode,
which, in addition, has a topological character. On the
other hand, the Hamiltonian

do. G,~X'X~ = do. G,~X"X'~

does depend on the metric. This can be interpreted even
if the string is understood as being in a comoving frame,
since it is an extended object and its energy is not local-
ized.

As in Hat space-time [13I the string winding mode has a
solitonic character. Since we have a topological conserved
current J' = (2x)e pc)) X', there is a conserved charge
for a solitonic solution of the forrr, X,' &(o —w) = 2m'((T—
~), where u)' is the winding number. A formal expression
for the quantum soliton operator which creates a soliton
(of winding number u)') out of the vacuum is given by

T(x) = exp (
—— de X".„(e—x) p; (~ —x)), (20)

As usual, real eigenvalues indicate the stability of the
solution. By substituting it into the equations of motion
and keeping only the linear terms it can then be easily
seen that, due to the dependence on ~ of the ChristofI'el
symbol (and coordinate X&),

f"'(&) + ~'f'(o) = -27,'~X'j(~ ~)(~~f"(~) —f'"( )oj,
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where I, is the momentum associated to X', i.e. , P, =
G,~8 X~. This operator satisfies the usual commutation
rule with the charge operator W' = (2x) r jdcr 0 A',
that is,

[w', T(m)] = w'T(u)).

We conclude with some comments and remarks. As
far as the properties of the string solution are concerned
only local properties of the space-time, like its curvature,
are relevant. Topological properties such as a possible
nonsimply connected structure or compactedness of the
background are not relevant to select one of the movers.
The later properties may contribute to a nontrivial fun-
damental homotopy group which in turn determines the
presence of winding modes only. In connection with this,
other backgrounds such as the antisymmetric tensor can
be considered. It will contribute a torsion term to the
equations of motion.

The solution allowing both movers Eq. (16) could be
turned into a Kahler metric if G~~ = G g = 0 and
if a complex structure is properly introduced after Eu-
clideanization. The left- or right-movers turn into holo-
morphic or antiholomorphic functions and one may inter-
pret them as sigma-model instantons defined on a Kahler
manifold [14]. However, this interpretation is not valid
since our base space is compact (in the world-sheet co-
ordinate cr) and it is not possible, by joining a point at
infinity, to define the second homotopy group needed for
the characterization of instantons.

Besides the static backgrounds which allow left- and/or
right-movers, we also found from Eqs. (6a), (6b), and
(6c) a time-dependent solution

G+ ——8 h,
G, = [a,A++ g, (X')]G+
G+, ——n, h+ B,h,

G+( G-~)
G+

G,

(22a)

(22b)

(22c)

(22d)

where the a, are constants, g, = g, (X'), and h

h(X, X'). As pointed out above such a time-dependent
solution should not be allowed. In fact, it is possible
to show that the metric (22) is singular. Singular rnet-
rics are allowed in gauge theories for gravitation but their
role is not understood [15]. Moreover it should be noticed
that such a metric admits black hole solutions since, if
G+ vanishes in some point, then G,~ becomes singular

(and vice versa).
Other background fields may be considered. The anti-

symmetric tensor, for instance, contributes to the equa-
tions of motion with a torsion which is the antisymmetric
part of the ChristoKel symbol. This generalized equation
still allows the chiral solution.
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