
VOLUME 70, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JANUARY 1993

Nuclear Size Correction to the Electron Self-Energy
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The nuclear size correction to the self-energy of an electron in the 1S&yq, 2Sqy2, or 2Pq~2 state in
hydrogenlike ions is calculated. The results modify theoretical predictions required for experimental
tests of quantum electrodynamics in strong fields, and they resolve differences among previous calcu-
lations for the Lamb shift in hydrogenlike uranium. Results are presented for a number of elements
ranging from iron (Z = 26) to fermium (Z = 100). An estimate of the nuclear model dependence
of the effect is made, and, based on the numerical results, a simple formula for the correction as a
function of the nuclear radius is provided.
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The distribution of charge in the nucleus influences the
quantum electrodynamic (QED) corrections to the struc-
ture of atoms. Theoretical consequences of the nuclear
size for the Dirac energy eigenvalue and for the vacuum
polarization correction are understood [1—5], but the ef-
fect on the self-energy correction has been more difficult
to quantify. For example, in hydrogen, there has been
dispute over the order of magnitude of the effect [6, 7],
and in lithiumlike uranium, theoretical estimates span a
range that is four times the experimental uncertainty [2,
8, 9].

We address this issue here, and describe a precise cal-
culation of the nuclear size effect on the self-energy in
high-Z hydrogenlike atoms. Besides providing results for
a broad range of special cases, we study the nuclear model
dependence, and the charge radius dependence of the ef-
fect. The hydrogenic value is not only important for tests
of QED in high-Z hydrogenlike atoms, it also gives a first
approximation to the correction in high-Z few-electron
atoms and in inner shells of heavy neutral atoms.

Despite the fact that the nuclear size correction is small
compared to the point nucleus QED effects, standard
perturbation theory is not valid for this type of correc-
tion at the higher-Z range [5]. Therefore, we carry out
a complete calculation of the self-energy in the Beld of
a finite-size nucleus, and subtract the known Coulomb
contribution in order to identify the nuclear size effect.
This procedure entails a loss of numerical precision, par-
ticularly at low Z, so that a precise numerical treatment
is required to obtain reliable results.

Previous calculations of this correction have been con-
fined to high nuclear charge number Z, and have numer-
ical uncertainties that are of order 25% of the effect, or
higher [2, 8, 10—12]. The calculation reported here ex-

tends from Z = 26 to Z = 100, with an estimated nu-
merical precision of about 0.003% of the size correction in
the best case. As a consequence, the uncertainty in the
predictions for this effect is dominated by the nuclear
model dependence, which is of order 0.2% at Z = 90 for
the charge distribution employed here, or by uncertainty
in the measured charge radius of the nucleus which is
relatively large in some cases.

To model the nucleus, we note the fact that the Dirac
eigenvalue depends only weakly on the details of the nu-
clear model, provided the root-mean-square (rms) radius
is fixed to a particular value [4]. We assume that the self-

energy behaves similarly. In particular, for convenience
in the calculation, we employ a model where the nuclear
charge distribution p is spherically symmetric, uniform,
and has a surface radius R„:

Zc
dx x p(x)

by B„= B and B, = R, respectively.
The self-energy in the field of the nucleus is given by

(in units in which h = c = m, = 1)

p (x) =
4 e(R„—x).
3 7t

An indication of the model dependence of the nuclear size
correction to the self-energy is obtained by also calculat-
ing the correction for a hollow shell charge distribution
with radius B,

p, (x) = b(x —R, )
Zc

S

in a number of cases. The radii in (1) and (2) are related
to the rms radius

ZO,'

2F
~

—bz21

dx2 dxi p„(x2)n&G(x2, xi, z)n"pn(xi) —&m dx 0 (x)P4 (x)
X21

(4)
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where b = —i[(E„—z)2 + i6) ~, Re(b) ) 0, CF de-
notes the Feynman contour, P„and E„are the eigenfunc-
tion and eigenvalue of the Dirac equation for the bound
state n, G is the Green's function for the Dirac equation
corresponding to the operator G = (H —z), where
H = cx p+V+P is the Dirac Hamiltonian, x2i = x2 —xi,
and bm is the mass renormalization constant. We employ
the values n = 1/137.036 and A, = 386.1593 fm. For the
nuclear models considered here, the external potential is
given by

V( )
Vp~V2x
—Zn/x

for x(Rp,
for x&Rp, (5)

with Vp = —2Zn/Rp, V2 = &Zn/Rp, and Rp = R„
for the uniform model, or Vp = Zn—/Rp, Vz = 0, and
Rp = R, for the shell model.

The evaluation of (4) is carried out entirely in coordi-
nate space, with a method of extracting the infinite mass
renormalization that is described in detail elsewhere [13].
The numerical calculation is based on expansion of the
Green's function in angular momentum eigenfunctions.
Construction of the Green's functions for the case of a fi-

nite nucleus potential is discussed in Refs. [3, 14]. In the
exterior region (x ) Rp), the Green's functions consist
of Coulomb functions that are evaluated as described in
Ref. [15]. In the interior region (x ( Rp), for the spheri-
cal shell charge distribution, the solutions are linear corn-
binations of spherical Bessel functions. In the case of the
uniform sphere charge distribution, we numerically eval-
uate the solution of the radial Dirac equation by calcu-
lating power series in the radial coordinate 2:. The well-
known solution, regular at the origin, has a lowest power

i, where K is the Dirac angular momentum quan-
tum number, and the power series converges well for the
range of x required for this calculation. Linearly inde-
pendent solutions, irregular at the origin, have a lowest
power of x ~

"~ . We factor out a dominant exponential
term, and in most cases it is suKcient to employ a sim-
ple power-series expansion for the numerical evaluation of
the remaining factor. However, when the intermediate-
state energy parameter ~z~ is large, e.g. , of order 10 to
10s, and ~v~ is small, the numerical evaluation is car-
ried out with the aid of an asymptotic expansion in 1/~z~
of the coeKcients in the power series in x. This method
provides numerically stable results in the cases where the

This gives the complete self-energy in the field of a
finite-size nucleus. The finite-size correction AE to the
Coulomb self-energy is obtained by taking the differ-
ence between. E defined by (6), and the precisely known
Coulomb value corresponding to R = 0 [18], i.e. ,

AE = — AF(Zn, R) m, c,n (Zn)
7r n3 (7)

where

AF(Zn, R) = F(Zn, R) —F(Zn, 0).

Table I gives the numerical results of this calculation for
the 1Sqg2 state at Z = 80 for both the uniform sphere
and spherical shell models, and the correction obtained
by subtracting the Coulomb contribution. Results for the
uniform sphere model for a number of elements ranging
from Z = 26 to Z = 100 are listed in Table II. Val-
ues for the 1Sig2, 2Siy2, and 2Piy2 states are expressed
there in terms of AF(Zn, R). The numbers in paren-
theses are uncertainties that are expected to be larger

simple power series does not. The rate of convergence of
the summation over K~ is improved by subtracting the
dominant terms with the method described in [16]. This
is a departure from the basic method described in [13].
The modification is compensated by including the dif-
ference between the renormalization subtractions in [16]
and [13],which can be calculated as a three-dimensional
integral to high accuracy. Summation over ~K~ is carried
out before integration over the coordinates or z, so the
convergence is geometric in the ratio of the smaller to the
larger coordinate, in the worst ease. The error in termi-
nating the sum is determined by calculating the remain-
der in the approximation that the subsequent terms in
the sum are replaced by the leading term in their asymp-
totic expansion in 1/~r ~. The summation is carried out
to an absolute precision of order 10 7, compared to a
maximum term of order 1. Numerical evaluation of the
integrals over the radial coordinates and z is carried out
as described in Ref. [17]. A more detailed account of the
numerical methods will be published separately.

Results of the evaluation of Eq. (4) are expressed as a
function F(Zn, R) defined by

E = —
s F(Zn, R) m, c .

n (Zn)4

TABLE I. The function F(Zn, R) and the correction AF(Zn, R) for Z = 80 and R = 5.475 fm
for the 1Sq/2 state.

Contribution

Total (uniform sphere model)
Total (spherical shell model)

Coulomb [18]
Correction {uniform sphere model)
Correction (spherical shell model)

F(Zn, R)
F(Zn, R)
F(Zn, 0)

b,F(Zn, R)
AF(Zn, R)

Value

1.495447(1)
1.495413(1)
1.5027775(4)

—0.007330(1)
—0.007365(1)
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TABLE II. Special cases of the function AF(Zn, R).

11 JANUARY 1993

26
36
54
60
70
80
82
90
92

100

R (fm)

3.730
4.230
4.826
4.915
5.273
5.475
5.505
5.707
5.863
5.976

1Si)2
-0.000172(1)
—0.000383(1)
—0.001275(1)
—0.001836(1)
—0.003695(1)
—0.007330(1)
—0.008432(1)
—0.015429(1)
—0.018492(1)
—0.034961(1)

2Si(2
—0.00018(1)
—0.000401(2)
—0.001462(1)
—0.002191(1)
—0.004746 (1)
-0.010256(1)
—0.012018(1)
—0.023776 (1)
—0.029090(2)
—0.059986(2)

2')2
—0.00000(1)
—0.000001(2)
—0.000021(1)
—0.000047(1)
—0.000170(1)
—0.000558(1)
—0.000707(1)
—0.001887(1)
-0.002483 (1)
—0.006873(1)

than the actual numerical error in most cases. We have
also calculated the corresponding results for the spher-
ical shell model. The fractional difference between the
size correction for the spherical shell model and the uni-
form sphere model is slowly varying over the entire range
considered here. In particular, the fractional difFerence
is 0.55% for all three states at Z = 100, and 0.3% for
the Sii2 states at Z = 54. The difference is less than the
numerical uncertainty when Z ( 54 for the Sii2 states
or when Z & 70 for the 2Pqi2 state. We expect that the
model dependence of the uniform sphere model is some-
what less than this difference in each case.

For comparison, the previous calculation by Johnson
and Soff [2] for the ISii2 state at Z = 80 leads to
AE = —1.6 eV, while this work yields AE = —1.0105
eV for the uniform sphere model and AF = —1.0154 eV
for the spherical shell model. A similar comparison to
the work of Johnson and Soff [2] and to Cheng, John-
son, and Sapirstein [8] for the Lamb shift in hydrogenlike
uranium is given in Table III. Blundell has done a cal-
culation that is in agreement with but less accurate than
our calculation for this splitting [20). Cheng, Johnson,
and Sapirstein have recently obtained results that agree
with our work [21].

Since the nuclear size correction depends on the exper-
imentally determined charge radius of the nucleus, and
this quantity changes as measurements improve, it is use-
ful to fit the correction by a simple function of B in order
to accommodate changes in the value and to estimate the

TABLE III, Calculations of the finite nuclear size cor-
rection to the self-energy of the 2Priq-2Sri2 splitting (Lamb
shift) in hydrogenlike uranium (R = 5.863 fm).

error in the nuclear size correction due to uncertainty in
the measured radius. To study the dependence of the
correction on B, we consider the functional form

AF(Zn, R) = aR "(1+bR+ cR + ), (9)

as suggested by the analytic form of the nuclear size
correction to the Dirac energy eigenvalue [1]. In or-
der to determine the parameters in (9), we calculated
the nuclear size correction in the 1Sii2 state for Z =
30, 60, and 90 over the range B = 1.0 fm to 5.0 fm,
in steps of 0.5 fm, and R = 6.0 fm. An estimate for

p was made by extrapolating to R = 0 the function
ln[F(Za, 2R)/F(Zcr, R)] = pln2+ bR+ . The co-
efFicients a, 6, and c were evaluated by a least squares
fit to (9), for fixed p. The results are displayed in Table
IV, where the parameters a, b, and c are normalized for
an rms nuclear radius expressed in ferrnis. Equation (9)
with the parameters in Table IV reproduces the calcu-
lated values of the size correction to better than 0.07%
over the range B = 1 fm to 6 fm. A simpler function,
suggested by (9), is

AF(Za, R) = a'R",

where a' and p' are effective constants for Axed Z and a
limited range of B. For example, for Z = 90, B = 5.2
fm to 6.2 fm, and p' = 1.353, (10) agrees with (9) to
within 1 part in 104, which is nearly an order of mag-
nitude better than a linear best fit. Although Eq. (9)
is likely to be a better representation of the functional
form of AF, Eq. (10) is clearly preferable for an exten-
sive tabulation. In accord with Eq. (10) the fractional
uncertainty u in the nuclear size correction to the self-

Reference

Johnson and Soff [2]
Cheng, Johnson, and Sapirstein [8, 19]

This work (uniform sphere model)
This work (spherical shell model)

Includes electron screening eBects.

Correction (eV)
—1.0(1)
—0.6
—0.8020(1)
—0.8062(1)

30
60
90

a (fm ")
—0.00001770
—0.0001207
—0.001410

b (fm ')
—0.0027
—0.0060
—0.0144

c (fm ')
0.0
0.00004
0.00036

1.911
1.728
1.416

TABLE IV. Fitted parameters in Eq. (9) for the nuclear
size correction.
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energy due to uncertainty in the measured charge radius
AR is approximately

It is of interest to note that the exponent p in Ta-
ble IV does not exactly match the corresponding power
2[1—(Zn) ]

i in the nuclear size correction to the eigen-
value. However, it appears that the Btted values are con-
sistent with a low-Z limit p —+ 2. This is in agreement
with the perturbative order-of-magnitude estimate given
by Lepage, Yennie, and Erickson of the nuclear size cor-
rection to the self-energy in hydrogen [7]. It is also con-
sistent with the analytic expression for the low-Z limit
of the nuclear size correction to the vacuum polarization
calculated by Hylton [5].

In summary, we have calculated the nuclear size cor-
rection to the self-energy over a wide range of Z. There
are significant differences between these results and the
work of Johnson and Soff [2]. The sources of error in
the present calculation are the numerical uncertainties,
which appear to be small, the model dependence, which
is somewhat less than 0.3% to 0.55%%uo, depending on Z,
of the nuclear size correction, and the uncertainty in the
measured values of the nuclear radius that can be taken
into account according to Eq. (11). A more extensive
calculation of the nuclear size correction is in progress.
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