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Escape of Gravitational Radiation from the Field of Massive Bodies
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We consider a compact source of gravitational waves of frequency cu, in or near a massive spher-
ically symmetric distribution of matter or a black hole. Recent calculations have led to apparently
contradictory results for the inhuence of the massive body on the propagation of the waves. We
show here that the results are in fact consistent and in agreement with the "standard" viewpoint in
which the high-frequency compact source produces the radiation as if in a Hat background, and the
background curvature affects the propagation of these waves.

PACS numbers: 04.30.+x

Some of the most interesting potential sources of
gravitational radiation consist of relatively compact as-
trophysical configurations, in particular binary neutron
stars, embedded in much larger and massive galaxies.
The standard viewpoint for radiation from such arrange-
ments is to separate the problem into that of the genera-
tion of the radiation by the compact source, and that of
the propagation of the radiation through the galaxy [1].
The radiation generated by the source is calculated as if
the source were in a Hat background. For orbiting binary
neutron stars the standard quadrupole formalism would
be a good approximation. The effect of the spacetime
curvature created by the host galaxy is then understood
in terms of its influence on the propagation of the waves
to a distant observer. In the standard viewpoint the ma-
jor propagation eIII'ects are the gravitational redshift and
gravitational lensing. For a galaxy of mass M and radius
P these effects are of order M/R and for ordinary galax-
ies, and for most purposes, are very small. (We use here,
and throughout this paper, units in which c = G = 1.)

Despite the apparent simplicity of this prevalent view-
point, there are some unclear issues. One of us (P.K.) has
found mathematical relations suggesting that the gravi-
tational field of the galaxy might suppress, by many or-
ders of magnitude, the emergence of quadrupole gravita-
tional waves generated inside it or nearby [2]. Two of us
(R.P. and J.P.) have studied the same problem and have
found that the galactic gravitational background has a
minimal eKect on the emergence of the waves, and that
the "standard viewpoint" is valid [3]. It is now clear how
the specific results of the two studies can be compatible,
and what the implication is for astrophysical sources of
gravitational radiation.

The mathematics which gave rise to the appearance of
suppression was framed in the language of the Newman-
Penrose [4] (hereafter NP) formalism, and is based on the
Weyl projection 4o in that formalism. For an outgoing

solution, @P takes the form @P = QpP(u, 8, P)r s+O(r s),
where u is retarded time. It is well accepted that infor-
mation about outgoing gravitational waves is encoded in
the shear o = op(u, 8, P)r + O(r ) and in the Bondi
news function [5] dop/du.

In spherically symmetric backgrounds it is convenient
to consider a multipole decomposition and to treat sep-
arately each multipole mode. For modes of multipole
index E we can write 4p = 4p 2', gp ——gp qYj, op =
Do 2Yj, where 2 Yj are the spin-weight 2 spherical
harmonics. A useful feature of the quantities 4p, Qp, crp,

with angular variables removed, is that their real and
imaginary parts correspond respectively to even- and
odd-parity modes. If the background spacetime is a
Schwarzschild spaceti. me of mass M, and if time depen-
dence e' ' is assumed, the NP equations lead to the re-
lations

-p2 2

6(l + i~M/2)

(E —2)! r2~'
(~+ ')'

(g+2) ) ZM

for the quadrupole and general 8 cases. Here the + signs
apply for even-parity perturbations, and the —signs for
odd.

It is Eq. (1) that suggests suppression of radiation.
The intensity of the gravitational radiation is represented
by o'p. If gpP is taken to represent the quadrupole mo-
ment of a source, it follows that for a given quadrupole
moment oscillating at frequency w, the radiation is re-
duced due to the mass of the Schwarzschild background
by the factor (1+ iwM/2) ~, so that the radiation power
flux (proportional to ~dop/du~2) is reduced by the fac-
tor (1 + w M /4) ~. For a typical galaxy M = 10
cm, and for the radiation sources of greatest interest
w = 10 ~ cm ~. Equation (1) then can be interpreted

1993 The American Physical Society



VOLUME 70, NUMBER 11 PHYSICAL REVIEW LETTERS 15 MARCH 1993

D@o = 40 '+ f(r, w)@0+ g(r, w)40 = S(r, w), (2)

in which the source function S(r, w) is known, in which
the coefficient functions f and g are known functions
constructed from the background metric, and in which
a prime denotes differentiation with respect to r. There
are at least two cases for which such an equation can ex-
plicitly be found: (i) if the "galaxy" is made of perfect
fluid and the waves are odd parity, as in [3], and (ii) if
the source lies in the vacuum exterior of a galaxy or hole,
as in [7, 8]. The statements below about the radial de-
pendence of the Wronskians, and other functions, refer
to calculations made in these two cases.

We choose boundary conditions for Eq. (2) appropriate

as imposing a suppression of the radiation flux by more
than 17 orders of magnitude.

The mathematics, and most of the issues of physical
interpretation, leading to Eq. (1) are not controversial.
From the beginning of the debate about the physical re-
ality of the suppression, the crucial question has been
whether $00 could be interpreted as the quadrupole rno-

ment of the source, as is done in flat space. What is really
needed, of course, is a source calculation clearly showing
the relationship between Qo and the source quadrupole
moment. The first approach to this was a scalar model
given by Kozameh, Newman, and Rovelli [6]. Two of
us (R.P. and J.P.) did an explicit calculation [3] for a
compact source at the center of a spherical, perfect fluid
"galaxy. " A Green function solution gave the relation-
ship between the source and the waves outside the galaxy,
and showed no evidence for suppression. This calcula-
tion, however, was not done directly in terms of goo. It
could not, therefore, directly reveal the "enhancement"
that must appear in a calculation of $00 in order to off-

set the mathematical suppression present in Eq. (1). At
about the same time, one of us (P.K.) wrote down the
farm of the Green function solution directly in terms of
$00, and found no evidence for this enhancement [7, 8],
suggesting that the suppresion may be a real physical
effect.

Here we resolve the apparently divergent findings. To
describe the unperturbed background spacetime, both in-

side and outside the galaxy, we take the form of the met-
ric to be ds2 = —e dt2+e~ dr +r2(d82+sin ed' ) with
v and A functions of 7- only. We define the radial variable
r, by dr/dr, :—e! l~:—e '!"l and the retarded time u

by u=—t —r, .
We treat the source of gravitational waves as a per-

turbation on the background of the metric given above,
and we write 4'0 = @c(r,w)e' ', goo

——goo(r, w)e' ' for
an /-pole moment with time dependence e' '. The per-
turbed field equations in general relate perturbations of
the Weyl projections, the NP spin coeKcients, and the
stress-energy perturbations. For clarity of description,
we will assume that the equations can be combined to
give a decoupled equation for C0 of the form

to the galactic center and for outgoing waves far from the
galaxy. To construct a Green function satisfying these
conditions we define two solutions of the homogeneous
equation DR, = 0. The function R., with the limit 'R,
r has the correct behavior at the center of the galaxy,
while 7Z, with the limit 7Z: r e ' " represents
outgoing waves.

In terms of these functions it is straightforward to
write the solution to Eq. (2), outside the source, as

@0 = 7Z f ~I~ l~ ldr, where W(7Z„R, ) is the Wron-

skian R,Z' —7Z, ', R~. From these definitions we arrive
at a Green function solution

"0
00 = S(r, ~)7Z.

W('R„7Z )

where Kq is a function of ~, r, and E and has the same
value it would have in flat spacetime.

We conclude that Eq. (3), for a compact source at the
center of a nonrelativistic galaxy, reduces to

for goo.

It will be useful in discussing this result for us to con-
sider a case (like that of a neutron star binary in an
ordinary galaxy) for which both the galaxy and the grav-
itational wave source are nonrelativistic, and for which
wM is enormous. In this case, Eq. (1) predicts enormous
suppression. If the suppression is a mathematical arti-
fact, not a physical suppression, we must find in Eq. (3)
a counterbalancing enhancement factor. Since the galaxy
is nonrelativistic, we can immediately eliminate everal
possibile sources of such a factor. The function 'R, can-
not give rise to the enhancement factor since it retains
the same form as in flat space at the center. The source
term S(r, w) is constructed from the source stress en-

ergy (which cannot contain a reference to M outside the
galaxy), and from the spacetime geometry at the region
of the source (which is only influenced by a negligible
M/R contribution).

We conclude that the numerator in the integrand in

Eq. (3) is negligibly diKerent from what it would be
in a flat spacetirne background. In particular, it can-
not contain a large enhancement factor of the form
1 + 12[(E—2)!/(E+ 2)!]iMcu. If such an enhancement fac-
tor is to appear it must come from the Wronskian, and
the Wronskian, unlike the other terms in Eq. (3), cannot
be ruled out as the source of such a factor. The Wron-
skian contains solutions normalized both at the center of
the galaxy and in the exterior, and hence "knows" what
the mass of the galaxy is. Aside from small corrections
(such as the central redshift), of order M/R, we find that
atr~0
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where ~2 has the same value it would have in a flat
background except for (negligible) corrections of order
M/R. The enhancement factor, in the square brackets
in Eq. (5), cancels the suppression factor in Eq. (1), and
we conclude that in this situation oo is the same (aside
from negligible corrections of order M/R) as it would be
in flat spacetime. Aside from the small redshift effect,
the gravitational field of the galaxy has no consequences
for the emergence of radiation produced at its center.

The above argument applies only for a source at a
distance from the galactic center small compared to the
wavelength of the radiation it produces. As the source
location Ir in (3)] moves outward, there are significant
changes in the forms both of W('R„7Z. ) and of S(r, w).
We can see the trends most clearly if we consider the
source to be in the Schwarzschild exterior of the galaxy.
In the exterior, (4) is replaced by W('R„7Z, ) = Kq where
corrections of order M/R have been omitted. The en-
hancement factor needed to cancel the suppression in (1)
is now missing. It should be emphasized that this change
in the character of the Wronskian is the key to resolving
previous apparently contradictory results. The nontriv-
ial behavior, in (4), of the Wronskian near r = 0 was not
anticipated when the original arguments for suppression
were made.

More than the Wronskian changes when the source is

moved to the exterior; there is also an important change
in Z, In the Schwarzschild exterior, aside from small
corrections, 'R, takes the form

(E —2)IR, = v.3e' " + K4 1 —12' — ' iMw e(I+ 2)!

(6)

in which the K, have the same form as for a flat back-
ground. In the exterior, therefore, the form of K, sup-
plies an enhancement factor for part of the source integral
in (3). For this part of goo the enhancement factor will
cancel the suppression factor in (1) and the contribution
to the radiation will be the same (aside from small cor-
rections) as in a Hat background. But the remainder of
the source integral for Q&, that due to the rs term in (6),
will be reduced by the suppression factor.

The situation is somewhat similar for sources in the
vicinity of a black hole, but some details must be altered.
In the case of galaxies, we used the homogeneous function
'R„normalized at r = 0. For holes we use instead the
function Rh ~, representing waves ingoing at the horizon.
The Wronskian in the Green function then has the value

1 K(E) Si~

and at large r the form of 7th, ~, is

+hole
E —2!~~e' ' + ~4R~(~) 1 —12 iM~ e ' "') .

Ts(~) (E + 2)!

Here rs and r4 are the same as in (6), and K(E) and
Kq have the same value as in flat spacetime. The fac-
tors Ts(w) and Rt(w) are the transmission and reHection
coeKcients for gravitational waves. For high frequencies
(wM )) 1) the transmission coefficient is negligibly dif-
ferent from unity, and the reflection coeFicient is negli-
gibly small, at least for quadrupole and other low E-pole
moments. Since the enhancement factor is only present
for the K4 term in (8) it is the only part that will not be
reduced relative to the flat space value by the suppres-
sion factor in (1). Since the reflection coeKcient should
be small, the result gives the appearance of significan
suppression of radiation for a compact source outside a
hole.

The first step in trying to understand these results is an
often overlooked point about sources: the emission from
a compact "quadrupole" (i.e. , nonrelativistic) source, lo-
cated far from the coordinate center, mill not be domi-
nated by E = 2. A compact source, far from the coor-
dinate origin, radiates predominately high 8 multipoles.

distant source, even a nonrelativistic "quadrupole"
source, radiates a negligible fraction of its power at low
8-pole moments.

Source integrals combine the source stress energy and
a solution of the homogeneous wave equation. Near r = 0
the homogeneous solution has a power-law form, and the

! source integrals, if confined to the region near r = 0, take
the form of integrals for the various multipole moments
of the source mass distribution. For a source located at
large r (i.e. , not within a small fraction of a wavelength
of r = 0) the result is very different. In this case the
source integral for E-pole radiation is not related to the
8th multipole moment of the mass distribution of the
source. Rather, the radiation will be dominated by the
multipoles which couple best to the source distribution.
For a nonrelativistic source, of wavelength A at radius
(Schwarzschild radial coordinate value) R, „„„,the best
coupling will be for /, R, „„,/A.

We must therefore consider large values of 8 when we
consider the suppression factor

1 —12 i Mw = 1 —12i M~/E
(I. —2)! .

(l+ 2)!
Typical numbers for a compact source and a galaxy are

10 7 cm B - 10 crn, M —10 cm. The
distance to an exterior source must be at least as large
as the galaxy radius, and this means that the radiation
will characteristically be at I. R, „„,/A & R/A, and
B/A is on the order 10~s. The suppression factor then
differs from unity by a correction 12M'/E4 of order 10
or smaller.
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Thus for "typical" sources and galaxies, the suppres-
sion factor does not play a significant role in determining
the radiation reaching a distant observer. Can one think
of sources at least in principle for which the mathe-
matics indicates that there is significant suppression, but
intuition demands that there is not? We can easily argue
that no such situation can arise. First, for suppression
to be important M~ must be large. Second, the dis-
tance to the source R»„,c, must be no smaller than the
Schwarzschild radius 2M of the galaxy. Thus we have

A A
(9)

It follows that Mw// is no larger than order (Mw) s and
hence cannot be large. The suppression factor can have
an important efI'ect only for a source just outside a black
hole (B, „„, M), with source wavelength on the order
of the radius of the hole (Mw 1). But in these circum-
stances we would certainly expect the curved background
to inHuence the emergence of radiation. One example is
a test particle falling radially into a Schwarzschild black
hole of mass M. The early work of Davis et at. [9] shows
that the emitted radiation is predominantly quadrupolar
and that the spectrum peaks at a = w~~~ = 0.32M
At the peak frequency the suppression factor for 8 = 2
waves is 1+0.16i, yielding a small but non-negligible re-
duction (of about 3%) of the radiated energy per unit
frequency interval dE/da. This reduction, relative to

the calculated radiation for a Hat background, is presum-
ably already included in the numerical results, since the
calculation took explicit account of the strongly curved
background.

We can then conclude that for any configuration of
source and galaxy or black hole, the suppression factor
can have a significant effect only in the case (R,„„„,
M A) that a significant effect would be predicted on
the basis of the standard viewpoint.
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