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Theory of Photoluminescence from the Wigner Crystal in a Strong Magnetic Field
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We develop a theory of photoluminescence from the magnetically induced two-dimensional Wigner
crystal. It is found that the photoluminescence spectrum is a weighted measure of the single particle
density of states of the electron system, which for an undisturbed electron lattice has the intricate struc-
ture of the Hofstadter butterfly. It is shown that the interaction of a localized hole with the electron lat-
tice wipes out this structure, but that an itinerant hole can, in principle, detect it. Experimental implica-
tions are discussed.

PACS numbers: 78.20.Ls, 72.20.Jv, 73.20.Dx

A subject of long-standing interest in condensed matter
physics has been the search to observe crystalline elec-
tronic order in systems that are highly quantum mechani-
cal. The possibility that electrons may form crystals at
zero temperature which melt due to zero-point fluctua-
tions as the density of electrons is increased was first
pointed out by Wigner [1],and the system has since been
known commonly as the Wigner crystal (WC). The
two-dimensional electron gas (2DEG) has proven to be
an excellent candidate for observing the formation of a
WC, largely because such high mobility samples are
available that the electrons are not necessarily dominated
by disorder eff'ects at the low densities necessary to obtain
crystalline order. The possibility of forming a WC is fur-
ther enhanced by application of a strong perpendicular
magnetic field, since this quenches the kinetic energy that
tends to melt the crystal at large electron density. Recent
studies of high mobility heterojunctions in strong magnet-
ic fields have uncovered a number of intriguing properties
that in some ways are consistent with the presence of
some crystalline order at the lowest available tempera-
tures. These include rf data [2,3], transport experiments
[4], cyclotron resonance [5], and photoluminescence (PL)
experiments [6,7]. It is the last of these that we will dis-
cuss in this Letter.

Photoluminescence experiments on these systems have
been performed in two ways. One set of experiments [6]
uses a low density of Be dopants that are purposely grown
into the sample approximately 250 A away from the
2DEG. A pulse of light excites a core electron out of a
Be acceptor, and the photoluminescence spectrum from
recombination of electrons in the 2DEG with the remain-
ing core hole is observed. More recent experiments [7]
have also investigated recombination of electrons with
itinerant holes in the host crystal (GaAs) valence band.
Both experiments show intriguing and complicated re-
sults; among them is the observation of a pair of photo-
luminescence lines that appear at magnetic fields for
which transport anomalies recently associated with the
WC are found. At the lowest temperatures, the lower of

the two lines has most of the oscillator strength; as the
temperature is raised, the oscillator strength transfers to
the higher of these lines, until the lower line cannot be
distinguished from the background. While it is tempting
to associate the lower line with a crystal phase, and the
upper with a melted phase, the precise interpretation of
the data is hampered by a lack of theoretical understand-
ing of what the PL spectrum should look like when the
ground state of the 2DEG really is a WC.

To address this question, we have computed the PL
spectrum for the Wigner crystal using a time-dependent
Hartree-Fock approximation (TDHFA) [8]. A few ex-
amples of PL spectrum obtained in our work are shown in

Figs. 1 and 2. Figure 1(a) illustrates the PL for a local-
ized hole, where we ignore the interaction of the hole with
the lattice, and the filling fraction of electrons is taken to
be v= —,

' [9]. The structure of the PL is essentially a
double peak, whose origin may be understood as follows.
The PL, as will be shown below, is essentially a weighted
measure of the single particle density of states. Within
mean-field theory (i.e. , Hartree-Fock) this is determined
by the energy spectrum of a single electron in a magnetic
field, moving in the average potential of all the other elec-
trons. Thus, the single particle density of states is that of
an electron in a periodic potential. This spectrum has an
intricate nature [10]:for rational filling fractions v=p/q
there are q subbands, and in Hartree-Fock theory p of
these are filled. We therefore expect that for any filling
fraction p/q, one should expect to see p lines in the PL
for the ideal case of a perfect electron lattice. An obser-
vation of this behavior in photoluminescence experiments
would yield direct conftrmation of the presence of a WC
in the system.

Unfortunately, the multiple peak structure is sensitive
to perturbations from external potentials. For the case of
an unscreened, localized core hole, the primary perturba-
tion is from the electron-hole interaction itself; the PL
spectrum when one turns on this interaction is illustrated
in Fig. 1(b). Here there is a single luminescence peak,
which is shifted down in energy from what was seen in
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Fig. 1(a). The structure is best interpreted in terms of
the density of states. This is illustrated in Fig. 1(c), for a
periodic electron system with twelve electrons and one
hole per unit cell. We see that the two filled bands break

up into three peaks, and by detailed examination of the
single particle (mean-field) states [11],we find that each
peak corresponds to a set of electron states that are suc-
cessively further from the hole for increasing energy. The
lowest energy electron state overwhelmingly dominates
the PL spectrum, because the overlap of its wave function
with that of the hole is nearly 2 orders of magnitude
larger than those of the next closest electrons. In essence,
the PL spectrum is dominated by a single final state of
the ion-electron-gas system.

It should be noted that, in most localized hole experi-
ments [6], the dopant atom is a neutral acceptor in its in-
itial state. The interaction of the core hole with the elec-
tron gas is then quite weak, leading to a negligible defor-
mation of the WC in its initial state. However, the anal
state of the dopant is charged, which introduces a strong
perturbation. The net result of this is that the PL spec-
trum is still dominated by a single final state, one in

which a vacancy is bound to the charged ion. The PL
spectrum is thus qualitatively the same as described for
the case of a strong initial interaction; details will be re-
ported elsewhere [11].

The difficulty of observing local crystalline order
directly in PL for the highly localized hole is clearly re-
lated to the fact that a single electron dominates the
electron-hole recombination. This problem can be allevi-
ated in principle if the hole is not so strongly localized.
We thus consider an itinerant hole in the valence band, a
geometry which is only very recently being examined in

the WC regime [7]. Typical results for this system are
shown in Fig. 2, for filling fraction v= t[ . For the lowest

temperatures, one can only see a single peak in the photo-
luminescence, essentially because at this filling the split-
ting between the two filled subbands is too small to
resolve numerically [12]. However, an interesting effect
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FIG. I. (a) Photoluminescence for v- —', with no electron-
hole interaction, with T below the melting temperature T,~t.

inset: Same for T above melting temperature. (b) Photo-
luminescence for v —,

' with electron-hole interaction, below
(solid line) and above (dotted line) melting temperature. (c)
Electron density of states for v 7 in presence of hole interac-
tion. Dotted line denotes chemical potential.
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FIG. 2. Photoluminescence for itinerant hole at electron
filling v= —,', , for T= 0.005T,ii (solid line) and T =0.05T~,ii

(dotted line). Electron and hole cyclotron frequencies given
here by m, and coi„respectively, and 6, is the conduction-
band-valence-band gap.
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occurs when the temperature is raised slightly (although
not nearly enough to melt the crystal): one then finds
that structure in the PL peak is introduced. This turns
out to be due to the density of states for the hole. This
also moves in the periodic potential of the electron lattice,
and so should be expected to have eleven bands as well.
Increasing the temperature moderately allows some non-
negligible probability for the hole to occupy the higher
bands, each adding a new line to the PL spectrum [13].
Once again, observation of this eA'ect would constitute
direct confirmation of crystalline order in the 2DEG. We
believe that, with improved sample quality, itinerant hole
PL experiments should oA'er the best opportunity to ob-
serve this type of structure, which is a direct consequence
of the presence of a WC.

Our calculated PL spectrum as the temperature is
raised so as to melt the WC also has very interesting be-
havior [14,15]. In this case, there is an upward shift in

the PL peak for the case of a localized hole, as seen in

Fig. 1. The increase in energy corresponds directly to the
potential energy lost per electron when the carriers are no
longer crystallized. What is remarkable about the shift is
that it occurs almost precisely at the melting tempera-
ture; there is very little motion just above or below the
transition. This is in qualitative agreement with experi-
mental observations [7], in which two distinquishable
lines are observed, with oscillator strength transferring
from the lower to the upper one as the temperature is in-
creased. One could interpret this as finite size domains of
the WC with a distribution of melting temperatures, ac-
counting for the continuous transfer of oscillator strength
between the two lines. That two such lines are visible in

real experiments, rather than a broad continuum PL
spectrum, seems consistent with an electrostatic environ-
ment for the recombining electrons that is fairly uniform
through the sample, indicating that there may be some
(substantial) order in the system.

We now outline how we calculate the photolumines-
cence in the TDHFA. (Details will be given elsewhere
[11].) The photoluminescence intensity is given, for a
single localized hole state, by

the limit Ep ~. It is not difficult to show P(p))
=lime, P'(p) —Ep)/np(Ep), where P' is the absorption
spectrum of the new Hamiltonian, and no is the average
occupation of the hole state, which just becomes 1 in the
limit Eo ~. The absorption spectrum is identical to
Eq. (1), except one needs to add the energy Ep to all the
quantities E„ in the expression. After standard manipu-
lations [16],one can show that

P'(p)) =
+ Im[R(p)+i8)] .

Io

e co/kg T

The function R(p)+ i8) is a response function, which con-
tinued to imaginary frequency has the form

~p
R(ip)) = —

J (T,L(r)Lt(0))e'"'dr . (2)

To compute this quantity, we consider (for the case of a
localized hole state) instead of a single hole a periodic
(hexagonal) lattice of them, with a unit cell that contains
as many electrons as can be handled numerically. In ad-
dition, since the system is in a strong magnetic field, we

project the electron part of the Hamiltonian into the
lowest Landau level. Because of the symmetry of the sys-
tem, R(p)) may be written in the form [17]

R(p)) =,QR(G, a))e
2nlo G

if we approximate the core-hole wave functions as delta
functions, where ng is the density of holes, 0 the volume
of the system, and the vectors G are the reciprocal lattice
vectors of the superlattice.

Our task is thus to compute the quantity R(G, p)). To
do this, we write down the equation of motion for R(r )
in terms of its commutator with the Hamiltonian, and
then apply a Hartree-Fock decomposition to the resulting
expression [18]. The result may be expressed in terms of
the Fourier components R(G, p)), which takes the form
(after a very involved calculation [11])

g[(p)+il)+Ep+ p)p)6G G' 8(G,G')]R(6', p)) =p(G),
G'

(3)

P(p)) = gee " ' i(m, OiLin, h)i 8(p) —E„+E ),
n m

—E„/kg Twhere Z=+„e " ', ~n, h) is a many-body electron
state with energy E„and N electrons where there is a
core hole present, ~m, 0) is a many-body electron state
with N —

1 electrons and energy E, m is the lumines-
cence frequency, and L =fd x i//(x) y/, (x) is the lumines-
cence operator, with y(x) the electron annihilation
operator and y), (x) the hole annihilation operator. As
written, the initial state is actually higher in energy than
the final state, and we find it convenient to rework the
problem in terms of absorption rather than emission. To
accomplish this, we add a term H'= —Epc(icp to the
Hamiltonian, where cJ creates a localized hole, and take

where p)p = —ep —(I/2/rl() )QGp(G) V( —G)e
V(6) is the Fourier transform of the electron-hole in-
teraction, ep=e/, +p), /2, e/, is the energy of the initial
core hole state, m, is the cyclotron frequency of an elec-
tron, and

B(G,G') = [IV(6 —6')p(G —6') + n/, V(G —6')
—(G —6') / /4i i(GxG')I(I/2xe je

where W is the sum of the direct and exchange interac-
tions, as given in Ref. [18]. We see that the form of R is
essentially that of a Green's function, and by inverting
Eq. (3) one can show that it has poles at precisely the en-
ergies of poles in the Green's function for the system in
the presence of the external interaction V due to the hole
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[19],up to the constant energy shift cop [20,211.
The case of the itinerant hole is treated similarly to the

case outlined above, except there is an important simpli-
fication: Since the hole density is low at all points in

space, it is safe to ignore any deformation of the electron
lattice due to the hole. For this situation, we find that
Eq. (I) may be written directly in terms of the Green's
functions for the electron lattice. Because there are many
hole states close in energy on the scale of temperature for
the itinerant hole, we also take a thermal average of Eq.
(I) over the di[I'erent hole states that the electrons may
decay into. The hole wave functions may be generated by
numerically computing its Green s function. Details will
be given elsewhere [11].

In summary, we have developed a theory of photo-
luminescence for the WC in a strong magnetic field. We
find that one can use PL to unambiguously demonstrate
the presence of a WC, by observing a gap structure asso-
ciated with the unique energy spectrum of an electron in
a periodic potential and a magnetic field. We show that
electron-hole interactions tend to close these gaps, and ar-
gue that the best situation for finding this structure would
be in an itinerant hole experiment.
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