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Dissipation by Nuclear Spins in Macroscopic Magnetization Tunneling
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Magnetic systems are currently considered attractive candidates in which to look for quantum phe-
nomena such as the tunneling of the total magnetization of a small (—100 A diameter) particle out of a
metastable easy direction or between degenerate easy directions. The eA'ect of nuclear spins as a dissipa-
tive environment for such a particle is considered and shown to be significant. Two dimensionless pa-
rameters characterize the dissipation: a coupling strength varying as the number of nuclear spins, and
the ratio of the nuclear and electronic Larmor frequencies.

PACS numbers: 75.60.Jp, 03.65.Db, 76.60.Jx

In the last five years, several authors, including this
one, have suggested that magnetic systems may be attrac-
tive candidates in which to look for macroscopic quantum
tunneling and coherence (MQT and MQC, collectively
referred to as MQP —"P" for phenomena) [1]. The phe-
nomena examined theoretically include magnetization re-
versal in small grains, both ferromagnetic [2-6] and anti-
ferromagnetic [7], nucleation in bulk magnetic materials
[8], and the motion of domain walls [9]. Experimental
observation of some of these eAects has been claimed
[10,11], but the question is still open in my opinion, as
the evidence is very indirect. The author has questioned
the interpretation of MQC in Ref. [11].

Since, as is now established [12-14],dissipation, or the
coupling of the macrovariable to its environment, gen-
erally suppresses quantum eAects, a basic requirement for
the observability of MQP is that dissipation must be
weak. In previous papers [3,5], magnetoelastic dissipa-
tion was shown to be negligibly small in the problem of
magnetization reversal in small grains. In this paper we
shall consider a new dissipative mechanism, the coupling
between electronic and nuclear magnetic moments. We
shall show that this form of dissipation is significant, and
may be quite strong depending on the strength of the
hyperfine fields and the number of nuclear moments. To
keep the discussion focused, we shall limit ourselves to
magnetization reversal in ferroJnagnetic grains, but such
dissipation is also important for the other problems men-
tioned above.

The system under study consists of a single-domain, in-
sulating [15], ferromagnetic grain, about 50 A in radius,
at a temperature well below the anisotropy gap. The in-
dividual electronic moments are then nearly perfectly
aligned, and the magnetization M equals its saturation
value Mo. The direction M of M is variable, however,
and quantum eAects in its dynamics could justifiably be
called macroscopic as there are 10 —10 moments in the
particle. In an external field H, the Hamiltonian for an
isolated grain can be taken to be the anisotropy energy,

H (M) vp( K)M +KzMy M'H)

where L'o is the particle volume, and Ki and K2 are an-
isotropy coefficients (K~ 2) 0) [16]. The particle is ini-

tially magnetized along its easy axis, z, and Hll —M. The
magnetization can tunnel out of the z direction, but the
rate is very small unless e—= 1

—H/H, « 1, where H,
=2K~/Mp is the field which renders the z axis classically
unstable. (We need e —10 —10 to get tunneling
through a few degrees for typical anisotropies and mag-
netizations. ) Up to a constant, for M~y&&M„we can
write

gcl/It v e3/2(8Mp/3 It y) (Kt/K&) t/2 (3)

where y is the magnetogyric ratio for the electronic mo-
ments. (See also Refs. [17,18] for early work on spin
tunneling problems. ) The small precession frequency in

the metastable well to~ is (2y/Mp)(K~Kze) ', and the
barrier height U is KIvoe . It is useful to note that
Sp /It =16U/3@to~. For Kt —Kz —5 x 10 ergs/cm, Mp
—500 6, a particle radius of 50 A„and e—2&&10 3, we
have cop 10 sec ' and I —10 sec '. There is obvi-
ously a large variability in this rate with the material pa-
rameters K~, K2, and Mo, and especially vo, the particle
volume.

When interactions with nuclear spins are included, the
tunneling rate can again be calculated using instanton
methods. An immediate (and not fully resolved) question
arises about the temperature that should be used in such
a calculation. In a real experiment (at a temperature
8-10 mK, say), even though ktte« @to~, kttB is likely
to be huge on the nuclear moment energy scale. The re-
laxation time for the nuclear spins (T~), however, is typi-
cally several seconds or more at such low 8, which far
exceeds the tunneling or "bounce" time rs. (rb —to~

'

without dissipation, and we will estimate it below when
dissipation is included. ) Thus the nuclear spins cannot ex-
change energy with each other during the tunneling pro-
cess, and can be regarded as being in a single well-defined
state (as opposed to a density matrix) at the start of a

H, (0,$) =K~vp0 (e —0 /4)+Kzvp8 sin p,

where 0 and p are polar angles.
The small size of the particle ensures that all the mo-

ments will tunnel together, and an instanton calculation
[2] gives the WKB exponent in the tunneling rate I for
the isolated particle as
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tunneling event. Formal &&0 calculations of the imagi-
nary part of the free energy [19] or of a WKB-like escape
rate [20] are based on the opposite assumption of a rapid-
ly relaxing bath (see Sec. 5.3 of Ref. [1(a)], and so
should not be used. They would falsely include the
efTects of incoherence among the microstates of the nu-
clear spin system. It is more accurate perhaps to do a
& =0 calculation, as this better mimics a single initial nu-
clear spin state. Such a calculation also has the advan-
tage of being simpler and better defined, and giving the
maximum depression of the escape rate (including ther-
mal effects) due to dissipative effects. By comparing the
exponent in this rate with U/kt, B, we can also estimate
the crossover temperature between thermal activation and
quantum tunneling.

The nuclear moments can be divided into three classes:
(1) those in the magnetic atoms, (2) those in nonmagnet-
ic atoms inside the grain, and (3) those in (nonmagnetic)
atoms in the medium surrounding the grain. Here, we
shall treat in detail only type 1 nuclear spins and qualita-
tively discuss the treatment and effects of the other two
types. The interaction Hamiltonian for one such nuclear
spin, denoted I, with the electronic spin on the same atom
J, and the magnetic field, is given by

&, =I A 3 —Ay„I H„t, (4)

where H,„,= —H, z —(4n/3)M, y„ is the nuclear magne-
togyric ratio, and 8 is the hyperfine interaction tensor,
whose principle axes we will take to be x, y, and z [21].
If there are N nuclear spins in the grain (and N electron-
ic spins, assuming only one magnetic species for simplici-
ty), we have Mpvp =Nb yJ, and we can write

H„=Am„I, +A„'I J +2'I J
where

co„=A,J/6+ y„(H, +4nMp/3),

8„'y =A„y+4nNh yy„/3vp.

(5)

Let the initial state of the combined system be denoted
by lz, [ —If), where z is the orientation of M, and [—I]
indicates that I, = —I for all nuclear spins. The tunnel-
ing rate I can be found by calculating the quantity

Q(T) = &z, [—I] I e (7)

as T ~, and comparing the result with exp( —Ep
+i I /2)T/h Here H is the .total Hamiltonian. Up to an
irrelevant normalization factor, Q(T) is given by the path
integral

Q(T) =„[dM][exp —Sp[M(r )]/hjA„[M(r )],
where

T
A„[M] = —I 'Texp — Id„( )dx/te x—I).
Here, 7 denotes time ordering, and Sp is the "bare" ac-
tion for the isolated grain, given by

Sp[M] =JI [H, (0, &) —iyvpMpcosH&(r)]dr . (10)
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To evaluate Q(T) in the semiclassical approximation,
we first ignore dissipation (effectively setting A„= 1).
For small e, it is easily shown [2] that the classical path
lies nearly in the x-z plane: M„—e', M~ —e. We can
thus perform the path integration in Eq. (8) over p(r) in

the Gaussian approximation, reducing Sp to the action
for a one-dimensional problem:

S [0] =Kivp i dr [ero 0 +0 (e —0 /4)] .

IJ2
A„[M] =1+ A„' „dr ~ dr20(r ~)0(rq)e

2g2 dP ~P
(13)

With T ~2 =T ]

At first sight it seems that, in our contradiction to our
earlier statements, the coupling to nuclear spins enhances
the tunneling rate since A„& 1 by Eq. (13). This, howev-

er, is not so. We have not been careful enough in our
treatment of the bare tunneling rate. If we define
0; =0(r;), and write

20' 02 =
Hi + 02 —(Hi —02) (14)

the terms involving 0~ and 02 can be reduced to single
time integrals. If we write A„as an exponential, they
amount to a renormalization of the 0 term in Eq. (11),
or a lowering of the potential energy for M in Eq. (2).
Indeed since the coupling to nuclear spins cannot be
physically turned oA; a measurement of the small angle
precession frequency co~ (by ferromagnetic resonance,
e.g.) automatically includes this renormalization. There-
fore, the quantities that we have been calling m~, Kt, and
U in Eqs. (1)-(3), (11), and (12) should be understood
to include the eff'ects of coupling to nuclear spins. It is

not difficult to see that the renormalized potential for M
is obtained by allowing the nuclear spins to adjust instan-
taneously or adiabatically to their minimum energy state
for given M. True dissipative eAects are due solely to the
last term in Eq. (14) [22].

The upshot of the above arguments is that the effective
action S,~[0] equals Sp+S~, where Sp is given by Eq.
(11) (with ro~ now properly understood), and

IJSi[0]=N 2A'
g g [0(ri) —0(r2)]

xe " '" dr t dry. (15)

Note that this is precisely of the Caldeira-Leggett form
[12], with a spectral density J(ro) —8(co —ro„).

It is apparent that we can treat type 2 and 3 nuclear

The classical solution or "bounce" is given by

0,((r ) =2e'~'sech(roar ) . (12)

To evaluate A„, we can therefore ignore the fluctuations
in Jz(z) compared to J (r ). We expect the magnitude
of the interaction term in Eq. (9), e' JA 'rb/h to be very
small compared to unity, so we can use perturbation the-
ory to find A„. Setting the ground state energy for the
nuclear spin to zero, we get
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spins in the same way. For type 2 spins, the Hamiltonian
can be written entirely as —Ay„2I2 H~~ instead of Eq.
(4). Here, H~~ is the field at the nucleus, and consists of
H, „t and fields produced by nearby atomic moments. The
latter can be quite strong, and are proportional to M. In
the path integral for the matrix element Q(T), we should
therefore include another factor A„z similar to Eq. (9).
To evaluate A„2, we divide H~~ into static and dynamic
pieces, the latter being proportional in magnitude to
M (r) or 9(r). The part of the dynamic piece that is
parallel to the static piece is much smaller in magnitude
[because 0(z) is small] and can be neglected, and only
the transverse dynamic piece need be kept. The calcula-
tion then proceeds as for A„, and yields an additive con-
tribution S2 to the efrective action that is similar to S]
[Eq. (15)], with N, I, A', and co„being replaced with
quantities N2, . . . , co„2, appropriate to type 2 spins. We
note here that since local fields in magnetic materials are
often quite strong (1-50 T) at all the nuclei [23], A'z
and 8' may well be comparable.

The evaluation of the correction to the action S3 from
type 3 spins is conceptually similar. The local field now
varies in space, as it consists of the applied field —H, z
and the dipole field created by M. The analogs of co„and

are also varied with position, and instead of just mul-

tiplying by N as we did to get 5& [Eq. (15)], we have to
integrate the single-spin correction to S,g over all space,
with a suitable density of type 3 spins. We have not been
able to write S3 in any simple useful form, but we note
that the corresponding spectral density can extend down
to very low frequencies, including zero if 4xMp/3 & H, /2,
which is possible for soft magnetic materials. Strong low

frequency dissipation can suppress MQP quite severely,
so the eAect of type 3 spins is potentially dangerous. The
overa11 strength of S3 is likely to be smaller than that of
S~ or S2, as the local nuclear field outside the grain is
weaker, but we do not have quantitative estimates.

To quantitatively analyze the eAects of dissipation on
the tunneling rate, we will consider only type 1 spins. We
will obtain approximate forms for the minimum value of
Sp+S] in limiting cases. The S2 contribution will be
easily incorporable once this is done. We proceed as in

Sec. 5 of Ref. [12(b)l, and define u =co„r, 8(r ) =2@'
&&z(u), and

o'[z] = (h cp /4U)S, tr[0(r )] .

(Recall that U is the barrier height. ) The dissipation is
characterized by two dimensionless parameters rl =co„/
m~, and p, given by

p =NIL(A„'/A, ') he@~/U. (17)
We shall denote the minimum value of o[z] by b(p, rl).
(Thus, when dissipation is absent, b= —, , which is a-
chieved for z =sechu. ) Assuming a hyperfine field at the
nucleus of 0.5-50 T, and mz —10' sec ', we get g—0.001 —1. Taking N —10, e —10, A„'/A, ' —1, and

@cod/U ——,
' (any smaller value would lead to a very small

bare tunneling rate), we estimate p ~ 10.
In terms of these dimensionless variables, we can write

fO
CO

d I ( )I' (19)
4z Q) + g

Consider case A first. Then z(g) «1, and we can put
co=0 in the co +q denominator in Eq. (19). If we re-
vert to an integral over u, we see that a~ then has the
eff'ect of renormalizing the coefticient of the z term in G'p

to I+p/2g. The resulting action has the same form as
the bare action, and a simple scaling argument yields

ub=(1+@/2rl)', bg = —', ub. (20)

The subscript denotes case A. The self-consistency condi-
tion for this solution to be a minimum is ub»1/g, i.e.,
q'~ && (2/p) '~ . The bounce is given by zp =sech(u/ub).

Now consider case B. The range of z(co) is then much
greater g, and we can approximate the co + g denomina-
tor in Eq. (19) by co . cT~ then renormalizes the z term
in ap, and again a scaling argument gives

ub=(I+p l/2r)
' ', by=-'3 ub '. (21)

The bounce is ub 'sech(u/ub). The self-consistency con-
dition is u « I/q, i.e., g' «(p/2)'

Before discussing the ranges of applicability of these
two cases further, we note that in both cases dissipation
causes the action to increase, and hence the tunneling
rate to decrease. In case 8, dissipation eff'ectively in-
creases the inertia for M, while leaving the potential un-
changed, while in case 8, the inertia is unchanged, but
the height and width of the barrier are both eAectively in-
creased. Either way, the tunneling rate decreases. Some-
what counterintuitively, in case 8, the tunneling time
rb=ub/co~, or the time spent "under the barrier, " de-
creases. The suppression in the tunneling rate is similar
to the Franck-Condon suppression of electronic transition
rates in molecules, insofar as the nuclear spins, like the
vibrational degrees of freedom, are slow and cannot ad-
just to the rapidly changing electronic spins. It is not
possible, however, to easily identify a Franck-Condon
overlap integral in our formulas.
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o [z l =
J du (z +z —z )

2

+ „~t [z(u) —z(u')] e "~" "~du du'. (18)
8

We will analyze a approximately, rather than attempt a
comprehensive numerical minimization (which could be
eSciently done following Ref. [24]). We will assume
that the bounce zp(u) which minimizes a varies on a time
scale ub that is alternately much greater (case A) and
much lesser (case B) than tl ', and self-consistently veri-
fy the conditions on p and g under which these assump-
tions hold. [Note that z has a single maximum at u =0,
and z(+ ~) =0.] Let us denote the two terms in Eq.
(18) by crp and o~. In terms of the Fourier transform
z (co) of z (u) we have
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For q ~ 1, case B has a much greater region of validity
than case A. For p =10, @=0.1, e.g., case 2 is inapplic-
able, and case 8 gives ub =0.82 (self-consistently cor-
rect), and b = —', (1.36). This is a 36k increase in the
WKB exponent, and could suppress tunneling quite
severely if the bare rate were already deemed to be small.
For p =10, ri =0.01, b =

3 (1.076).
The self-consistency conditions for both cases hold if

(p/2)' ))ri' ))(2/p)'i. One can then show that b~
&btt only if tI & (2/p)' . If t)(1, as we expect, this

condition limits the region where the best path is given by
solution A to values of p ~ 100. On the other hand, nei-
ther solution is self-consistently valid if p is small and g is
moderate, e.g. , p =g =0.1. In such cases, however, b can
be well estimated perturbatively, i.e., by substituting the
undamped solution in Eq. (18) for rr[z] Th.is approach
fails if p is small and ri is large (but still much less than
2/p), e.g. , p =0.1, tI =5. Such parameters are unlikely to
be physically relevant, however.

The effect of type 2 spins can be treated in the same
way. In fact if p, g, and the corresponding parameters p2
and g2 for the type 2 spins were such as to both favor a
solution of type 8, for instance, the least action b could be
obtained simply by adding a term pzr)z/2 under the radi-
cal for ub in Eq. (21).

We have shown that nuclear spin dissipation can sup-
press MQT in magnetic particles quite severely, and can-
not in any case be neglected for a quantitative under-
standing of the problem. Does it make it totally hopeless,
however, to look for these effects? We do not believe so.
It may not be out of the question to work with isotopes
that have no nuclear moments whatsoever. The magnetic
elements Fe and Cr fall in this class, as do naturally
abundant isotopes of several other elements that could be
used to make the magnetic compound, as well as the sub-
strate or embedding medium for the particles. Even if
high isotopic purity is not feasible, dissipation might be
kept small by having a small value of p. [This might be
achieved, e.g. , if the magnetic ion was Fe. The natural
abundance of Fe is 2.25%, effectively reducing N in Eq.
(17) by a factor of 50.]

Some recent papers have shown that topological in-
terference eA'ects due to the second term (which is a Ber-
ry phase) in Eq. (10) lead to a quenching of the bare
MQC tunnel splitting for half-integer and some other
special values of the total spin J [25], or for any J, but
special values of an external magnetic field applied so as
to preserve two classically degenerate ground states [26].
It is likely that nuclear spin dissipation will lead to a par-
tial unquenching of the splitting.

I am indebted to W. P. Halperin and J. B. Ketterson
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