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Quasiparticle Decay Effects in the Superconducting Density of States:
Evidence for d-Wave Pairing in the Cuprates

D. CofI'ey
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

L. CoAey
Department of Physics, Illinois Enstitute of Technology, Chicago, Illinois 606l6

(Received 8 October 1992)

Recent tunneling and photoemission data on the cuprate oxide superconductors may provide impor-
tant information in choosing between proposed models for the superconducting order parameter in these
materials, We show that corrections to the weak coupling mean-field approximation for a superconduc-
tor lead to diferent frequency thresholds for the spontaneous decay of the Bogoliubov quasiparticles for
diA'erent order parameter symmetries and that these eAects may be seen in the superconductor-
insulator-superconductor tunneling conductance. Comparison with the recent data indicates that a
d 2 2, rather than an s-wave, order parameter is a likely candidate for describing the cuprates.

PACS numbers: 74.72.—h, 74.20.Mn

One of the unresolved questions in the study of the cu-
prate oxide superconductors concerns the nature of the
superconducting order parameter. However, recent ex-
perimental tunneling data [1-3] on a wide variety of the
cuprates, combined with angle resolved photoemission
(ARPES) measurements on Bi2SrzCaCuqOs [4,5], may
provide key evidence in resolving this issue. The type of
superconducting order parameter present in the cuprates
has important implications, not only for the description of
the superconducting state, but also for theoretical de-
scriptions of the origin of the unusual normal-state prop-
erties of these materials. Two recent approaches in par-
ticular illustrate this point. The phenomenological mar-
ginal Fermi liquid (MFL) hypothesis [6] leads to an s
wave pairing state. The almost antiferromagnetic Fermi
liquid (AFL) model of Pines and co-workers [7,8] and
the spin bag model of SchrieA'er and co-workers [9,10]
predict a d-wave order parameter. Other contributions to
this debate include an analysis of NMR measurements
favoring a d-wave state [11—13], of Raman spectra [14],
and of the magnetic field dependence of the supercurrent
for a d„2 y2 order parameter [15].

The recent analysis [3] of experimentally measured
superconductor-insulator-superconductor (S-I-S) tunnel-
ing conductance, gsts=dl/dV, reveals a dip in the gsts
curves at a voltage corresponding to 3 times the measured
peak position in the tunneling conductance for a number
of the cuprate superconductors with a wide range of criti-
cal temperatures. This is also the case with numerically
generated gs~s using measured tunneling conductances on
superconducting-insulator-normal-metal (S-I-N) junc-
tions, gs&N. The analysis of Zasadzinski et al. [3] is the
first to identify the feature in gs~s with a superconductor
energy scale. This result is visible in S-I-S tunnel junc-
tions based on 2:2:0:1 BSCCO (Bi2Sr2Cut06) (T, =5.5
K), Nd2 —„Ce„Cu04—~ (T, =23 K), 2:2:1:2 BSCCO
(Bi2Sr2CaCu20s) (T, =86 K), and T12Ba2CaCuOs (T,

=1000 K). The same feature has also been measured by
other groups [1,2] and is reminiscent of a dip seen on the
high-energy side of the usual superconducting spectral
weight peak in ARPES [4,5]. In the latter experiments,
whose counterpart in conventional tunneling experiments
is gs&&, a precise determination of the "gap" is limited by
resolution problems. The important point to note, howev-
er, is that the dip is seen at approximately twice the peak
position. A dip, or any feature, at a voltage correspond-
ing to twice the peak in gs~N will show up as a dip or
feature at 3 times this peak voltage in the corresponding
gsts curve. The exact position and magnitude of this dip
may help to decide whether an s-wave or a d-wave order
parameter is appropriate for describing superconductivity
in the cuprates. Furthermore, the momentum depen-
dence of such a feature, probed in an ARPES experi-
ment, for example, could provide important clues to the
nature of the scattering mechanisms in the cuprates, the
physics of their normal state and their transition to super-
conductivity.

In our calculation the dip in gs~s is a consequence of
deviations from weak coupling mean-field behavior of the
superconductivity in these materials. Deviations from the
mean-field treatment of superconductivity are expected to
be more important in two dimensions (2D) than in three
dimensions. The cuprate superconductors are a good
place to look for these eff'ects given that the CuO planes
are an important feature of these compounds. Here we
argue that the dip seen in gs~s is a consequence of these
efIects and that the value of the biasing across the junc-
tion at which it occurs points to the conclusion that the
superconducting order parameter in the cuprates is a d
wave.

One consequence of deviations from a weak coupling
mean-field treatment of superconductivity is that the
single-particle states are associated with deformations of
the condensate [16-18]. We show how these deviations
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from mean field also lead to changes in the density of
states for superconductors, as seen in gsts(e V), arising
from quasiparticle decay processes. These decay process-
es are characterized solely by the gap function A(k), and
the quasiparticle excitation spectrum. Consequently they
are a probe of the nature of the order parameter. These
decay processes have previously been considered by Peth-
ick and co-workers [19,20] in their calculations of the
transport properties of the 8 phase of superfluid He
close to T, .

The starting point of the present analysis is a Hamil-
tonian, Eq. (1), describing a system of fermions interact-

H =QFkyk yk + g U(q)[Hg(kI, k2, k3, k4, a, p) yk,
ko k, k', q, a, P

ing via a potential U(q):

H =~ (kCkaCka+ ~ U(q)ck —q fC —k'+q IC —k' lCk I, (I )t
k, o k', k, q

where gk
= —2I [cos(k„a)+cos(k~a)] —p, a is the lattice

spacing, p is the chemical potential, and t is the hopping
matrix element. One assumes that the ground state of
the system at low temperatures is superconducting, the
nature of which depends on U(q). A(k) and the quasi-
particle operators, yk and yk, are determined by the
weak coupling approximation for the gap equation and
the Hamiltonian is written in terms of these operators.
The Hamiltonian becomes

a ykQy —klp yk4a+ HB (k 1 r k2~ k3~ k4r &~p) y/I I a yk2It yk2p yk4a

+Hc (k I, k2, k3, k4, tr, P ) yk, .ykZ yk, & yk,.+ H.c.],

U(q) = Uo

I+(2~q —(~ rr/a, ~ 2r/a) )2
(3)

For both s- and d-wave cases the largest contributions
to X(k, r22) come from Z~(k, co) and ZB(k, r22) in Fig. 1. In
the s-wave case Z~(k, co) and ZB(k, —r22) are real until
~C22~ ~ 3d,p where spontaneous decay is possible. For the

where k ~

=k —q, k2 = —k'+ q, k3 = —k', and k4 =k. The
form of the vertices H~, Hg, and Hg are given in Ref.
[18] and depend on the usual coherence factors, uk and
vk. The deviations from this mean-field approximation
are calculated to second order in the interactions. The
contributions to the self-energy, Z(k, co), of the yk yk

propagator are shown in Fig. 1.
In Ref. [18] U(q) was taken to be an attractive contact

interaction and the corresponding superconductor to be s
wave. Here we compare this case with a repulsive U(q)
which is strongly peaked at q=(~2r/a, ~rr/a). This
leads to a d-wave superconductor in the weak coupling
approximation. Our model for U(q) is motivated by the
suggestion that the short-ranged antiferromagnetic order
in the doped cuprates is responsible for the high value of
T, in the cuprates [7-10]. Experimental studies of spin
fluctuations in the doped cuprates, which become super-
conductors at low temperatures, show a peak in g(q, ro)
at Q =(2r/a, rr/a) which is smeared out over a range of
the order of the inverse of the magnetic correlation length

g [21]. The latter is typically of the order of several lat-
tice spacings. We have taken a simple model for U(q),
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cay. Ao is determined by solving the weak coupling gap
equation using U(q). In Fig. 2 we show the ImZ~(k, c22)

for the s-wave case with a contact interaction, U
= —1.22, and the d-wave case with Uo = 14.707 and
(= I in Eq. (3), giving Ap=0. 1 when tu =0 for both H~
and HB vertices in Eq. (2). Both 1m Z~ (k, r22) and

ImZB(k, —co) increase rapidly for r22 ~ 2hp and go over to
a linear dependence on co. In a more complete treatment
of the antiferromagnetic spin fluctuations, which are re-
sponsible for the d-wave superconductivity, this linear
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FIG. 2. ImZg(k, rll) for the s wave at k = (k/J2, k/J2) (open
circles) and for the d wave at k =(k/J2, k/J2) (solid circles)
and at k =(k, O) (stars). p =0 and ho =0.I. In the s-wave case
a contact interaction = —1.22 was used and for the d-wave
case U(q) in Eq. (3) was used with UII= I4.707 and (= I.
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(5)

dependence on co is suppressed and ImZ~(k, tp) event- order parameter A(k) = —,
' hp[cos(k )+cos(k~)] show be-

ually falls as tp increases [8]. The magnitudes of havior that is very similar to the conventional isotropic s-
ImZ~(k, tp) and ImZtt(k, —tp) with these parameters are wave case. We now show that the switching on of this
—0.03hp at o) =3hp. This anisotropic dependence on k decay channel may be seen in the tunneling conductance.
may also be rellected in ARPES [22]. The magnitude of The current across an insulating barrier is given by
ImZ(k, cp) increases with increasing Ap. It also depends [23]
on p and g. The more sharply peaked U(q) is, the more
ImZ(k, tp) increases as p 0. For the value of g used I(eV) ~ dtpN (to)N (cp+eV) . (4)~ —eV
here ImZ(k, tp) has a sharper turn-on at tp —2Ap but the
magnitude is practically unchanged as p goes from 0 to N ' (tp) are the densities of states of the charge car-
—0.1. Comparing the results for the s-wave and d-wave riers on the left- and right-hand sides of the insulating

cases, the microscopic calculations clearly show that barrier, which are determined by the imaginary part of
spontaneous quasiparticle decay becomes appreciable at the propagator G(k, tp) =Jdte' '(0!T[cq (t),ck (0)]!0).
tp's smaller by —hp in the d-wave case than in the s-wave cq creates an electron in a plane wave state and!0) is the
case. Zc(k, co) is negligible at low temperatures for both ground state on either side of the barrier. Rewriting
the s- and d-wave cases since it relies on the presence of G(k, cp) in terms of the yk propagators N (tp) contains

!
thermal quasiparticles. Results for the extended s-wave the eAect of the quasiparticle decay processes discussed

above. For m & 0,

N (to) =—g!ImG (k, tp)! =L 1 L I imZ~ (k, ~) I

2tt k [cp —Ek —ReZg(k, cp)] + [ImZ~(k, tp)]

The eft'ects of spontaneous quasiparticle decay are more
easily seen in gs~s(eV) curves than in gs~N(eV) curves.
This is because two superconductor densities of states are
convoluted with each other in gs~s(eV), whereas a super-
conducting and normal density of states are convoluted
with each other in gs~N(eV). Examining Eq. (4) one sees
that there is a big contribution to the current across the
junction when co= —hp and co+eV=hp, i.e., when the
bias across the junction is eV=2hp. In the same way the
eA'ect of the decay processes can be seen in a d-wave su-
perconductor when m= —Ap and m+eV=2hp, the fre-
quency at which the quasiparticle decay process starts to
become appreciable in a d-wave superconductor. The
calculated current is a monotonic function of eV with
changes in slope at e V =2hp and at eV =3hp for a d-wave
superconductor. Calculating gs~s(e V) picks out these
values of eV at which the slope changes and it is the rapid
increase in Z~(k, cp) at to=2Ap which is responsible for
the features at eV=3hp. The corresponding value of eV
for an s-wave superconductor is ~ 4hp.

In order to generate the gs~N and gs~s curves for a d-
wave superconductor we introduce a phenomenological
model in which ImG(k, cp) is replaced by a Lorentzian of
the form

ImG(k, cp) =
2tt (tp —Eg)'+r(k, tp)' '

where Eg is a renormalized quasiparticle spectrum which
has the same form as that given by the mean-field ap-
proximation but in which the parameters have been re-
normalized by the interactions. The qualitative features
of the k and to dependence of I (k, to) are determined by
our calculations of ImZ~(k, tp). Our model for I (k, tp),
Eq. (7), has the rapid increase at cp=2hp and the anisot-
ropy in k space seen in Fig. 2. These features are present
for all parameters in the microscopic calculations and

survive the eftects of repeated scattering. We have

r,
I (k, cp) =I p+ 1+tanh

2

co 2.5h, p

0.5h, p

~(k)x
2 Ap

(7)

rp and I, are taken to be free parameters. In Fig. 3 we

compare gs~N(eV) and gs~s(eV) curves for the case
where the frequency-dependent decay process is taken
into account, I p=0.05hp and I ~

=0.5Ap (full line), with

the case where this frequency dependence is ignored,
I p =0.05Ap and I

~
=0 (broken line). One sees that, as a

consequence of the frequency-dependent damping due to
the decay of Bogoliubov. quasiparticles, there is a dip in

gs~s(eV) for 3Ap~!eV! ~ 4hp. This feature has been

clearly identified in the experimental data by the work of
Zasadzinski et al. [3]. This dip is completely missing
from the gs~s(eV) where the frequency-dependent decay
process is ignored (broken line). Looking at the
gslN(eV) curves (&) of Fig. 3, there is no strong feature
and it would be difticult to identify the eAect in experi-
mental data. The assumption of an s-wave order parame-
ter will always produce a dip in the gs~s curves starting at
~ 4hp, which is not in agreement with the experimental
data [3]. The size of I

~
in Fig. 3 is an order of magni-

tude larger than the size of ImZ(k, cp) found in the micro-
scopic calculations and so our microscopic calculations
are used here only to motivate our phenomenological
model for I (k, cp). The magnitude of ImZ(k, cp) is

enhanced by antiferromagnetic spin Auctuations which

require going beyond second-order perturbation theory
and allowing for repeated scattering through Hc [24].

In our calculation we have concentrated on spontane-
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ductors. This provides strong evidence for the d 2 2 or-
der parameter in the cuprate superconductors.

We are grate u of 1 t J. Zasadzinski et al. for ma ing
to D.ilable to us prior to publication and totheir data ava

d S. A. Trugman, J. W. Wilkins, an . as
was su ortedzinski for useful conversations. This work was pp

by the U.S. Department of Energy.

I I I I I I I I I I I I I I II I I I I I I I I I II I I 1 I I I I l I I I I I II I I I 1 I I I I I I I I I I I I I3.5 —' ' ''

3 ~ 0—
Vl

C
D

2 ~ 5—

2.0—

[1] D. Mandrus et al. , Nature (Londonndon 351, 460 (1991).
[2] D. Mandrus et al. (to be published).

Am. Ph s. Soc. 37, 668[3] J. F. Zasadzinski et al. , Bull. Am. y .
(1992); in Proceedings of the U.S.— p.S.-3a an Seminar on
Electronic Structure and Fermiology gof Hi h T, Super-

d
' 27-29 July 1992 (to be published;conductors, Sen ai,

(unpublished).
[4] D. S. Dessau et al. , Phys. Rev. Lett. 66, 2
[5] Y. Hwu et al. , Phys. Rev. Lett. 67 2573 (1991).
[6] P. B. Littlewood and C. M. Varma, y .rrna Ph s. Rev. B 46, 4

(1992).
Lett. 67, 3448 (1991).[7] P. Monthoux et al. , Phys. Rev. Lett.

h s. Rev. Lett. 69, 961[8] P. Monthoux and D. Pines, Phys.
(1992); (unpublished).

[9] J. R. Schrieff'er et al. , Phys. Rev, 4Rev. Lett. 60, 944
(1988); Phys. Rev. B 39, 11663 (1989).

[10] A. P. Kampf and J. R. Schrieff'er, Phys. ev.
(1990).

ett. 68 706[11]N. Bulut an d D. 3 Scalapino, Phys. Rev. Lett.
(1992).

[12] S. Quinlan et al. (unpublished).
[13] Q. P. Li and R. Joynt (unpublished).

ski Ph s. Rev. Lett. 63, 911[14] H. Monien and A. Zawadowski, y .

Ph s. Re . Lett. 69, 2264[15] S. K. Yip and J. A. Sauls, Phys. Rev. e

[16] D. Coffey et al. , Phys. Rev. B 38,38 5084 (1988).
ev. Lett. 61, 2709 (1988).

[ ] D. C ff'e Phys. Rev. B 42, 6040 (1990);47, 593 1993 .
[19] C. J. Pethick et al. , Phys. Rev. Lett.

[20] P. Bhattacharyya et al. , Phys. Rev. , 7 .. Rev. B 15, 3367 1977 .
s. Rev. Lett. 64, 800 (1990).

[22] L. Coffey and D. Coff'ey, Report No. LA-UR-92-4270 to
be published).

[23] J. R. Schrieffer et al. , Phys. Rev. Lett. 1

[24] D. Coffey and L. Coff'ey (unpublishelished).

Ol
O

6$

C
O
O

1.5—

CR
C
4l
C
C
D

1.0—

0.5—

I I I I I I I I I I I I I II I I I I I I I
1

I I I I I I I I
1

I I I I
l

I II I I I I I I I
I

I I I I I I I I I
I

I I I I I

4-4 -2 0 2

0 ' 0

e V/&0

FIG. 3. Tunneling conductances, gs[N (curves A ) and gsis
(curves 8), as a unBg, f nction of the voltage across the junction, eV.
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line is the resu t or aI f frequency-independent damping,
Here p = —0.2 and h,0=0.01.
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