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Critical-Current Fluctuations and Flux-Flow Noise in Type-II Superconductors
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By relying on a recent theory of transport in the mixed state and a related model of pinning in soft
materials, the instantaneous critical current is introduced as a well-defined part I[ of the total constant
current. This nondissipative and time-dependent I] is assumed to be randomly distributed near the sam-
ple surface, and is described as a 20 turbulent homogeneous flow. Auto- and cross-correlation functions
of both voltage and magnetic field noises are predicted and are in full agreement with experiments.

PACS numbers: 74.40.+k, 74.60.Ge, 74.60.3g

Flux-Aow noise has been extensively studied, particu-
larly during the 1960's and 1970's [1-6]. The spectrutn
and amplitude of the noise voltage 6V(t), typically
10 —10 '' V/(Hz)' in the 0-10 kHz bandwidth, were
regarded as significant parameters revealing the more or
less irregular motion of vortex lines (VL) in the presence
of pinning. The reader is referred to the excellent critical
review by Clem [7]. In view of the experimental diK-
culties and the increasing intricacy of interpretations, this
scope has been practically discarded since about 1980.

It should be noted that soft samples were used, classi-
cally shaped as foils or strips perpendicular to the applied
magnetic field. Low to moderate critical currents I, are
required to avoid spurious sources of noise due to exces-
sive dissipation, such as Ilicker noise [7]. Therefore, at
working temperatures (4.2 K [1,2,5] or close to the l
point [6]), the authors had to operate at the onset of the
I-V curve; in this region, where flux Aow is essentially in-

homogeneous along the sample [8], measurements yield
unreliable results.

Recently [9], we have reconsidered the problem of
noise, both theoretically and experimentally. We have
performed a series of experiments in superAuid helium in

order to widely explore the Aux-Aow regime. Voltage
noise, magnetic field noise around the sample, and
thermal Joule noise [10] were investigated, as well as
their cross correlations. By relying on a phenomenologi-
cal theory of vortex motion, recently published by two of
us, Mathieu and Simon (MS) [11],we were able to work
out a consistent theory of noise, the principle of which is

brought forward in this Letter.
Roughly speaking, two mechanisms have been ad-

vanced to account for the voltage noise quantitatively. In
their pioneering work, van Ooijen and van Gurp [1] as-
sumed that Aux bundles nucleated randomly at one edge
and moved rigidly across the sample with constant veloci-

ty vL. This process gives rise to a time sequence of sta-
tistically independent pulses, the cutoA frequency of the
noise spectrum being related to the time of fight of bun-
dles. This analogy with the electronic "shot noise" was
attractive, but more and more adjustable parameters
were introduced to fit the data; besides the Aux bundle
size gt„others include the fraction of pinned vortices [2],

or a distribution of subpulse times [6]. Somewhat artifi-
cially, pg is found to be a rapidly decreasing function of
current, falling off below the flux quantum po [2,6].
Moreover, the predicted dependence on the configuration
of voltage leads is not observed. The strong vortex densi-

ty Auctuations Bn involved in this picture are questionable
since they ignore strong interactions that tend to restore
the uniformity of the vortex array. In any case, they
would imply a large and easily detectable magnetic field
noise in the low-frequency range [9], which clearly is not
observed either [9].

To interpret the observed smallness of the noise in pure
Nb and Va foils, Heiden et al. suggested an alternative
approach which emphasizes the role of local 20 velocity
Auctuations BvL in an otherwise quasiperfect moving lat-
tice (Sn =0). An effective number m of VL participat-
ing in the Auctuation surrounding a pinning site, and a
site density nz are introduced. Fluctuations BvL at
diNerent pinning sites are assumed to be statistically in-

dependent. The amplitude and spectrum of Stt. (t), as
well as np and m, are undetermined parameters governing
the noise amplitude and spectrum. It turns out that the
only quantitative predictions of this model that concern
the geometrical dependence of voltage-voltage correla-
tions for two movable contact pairs are not confirmed by
experiment [7,9].

Thus, the intricate relationship of noise-to-vortex
motion remains rather obscure [12,13]. Quoting Clem
[7] in his conclusion: "a suitable theory of noise is likely
to be challenging. Ideally, such a theory should be inti-
mately related to an appropriate theory for critical
currents, " It is in this connection that we wish to make a
point. In Aux-Aow or noise models, whether concerned
with individual vortices [7] or with an elastic continuum
[12], the detailed distribution of currents through the vor-
tex lattice is disregarded as well as the related local equi-
librium of vortices around pinning centers when I ~ I,.
Usually I, is not identified as some well-defined part of
the transport current, but rather as the right coe%cient
obtained by equating either VI, with an estimate of the
dissipation, or J,B with some mean pinning force density
[12]. We believe that an analysis of the current distribu-
tion, such as the one presented below, is the key to the
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puzzle of noise and critical currents.
Here we need to recall the main outlines of the MS

phenomenological theory [11,14]. The mixed state is re-
garded as a continuum on the scale of the vortex spacing
a, and the vortex array is described locally by the vector
co =nppv, where v is a unit vector along VL. In contrast
with Clem s kinematics [7], which starts by investigating
the motion of individual vortices, such a macroscopic
analysis is not restricted to 2D motions of straight VL.
This is a crucial point in our interpretation of critical
currents. The local mean density of the free energy F is
expressed as a function of a reduced set of macroscopic
variables, in particular the electromagnetic field E, B, the
supercurrent J, (or the superfluid velocity V, ), and m.

The equations for thermodynamic equilibrium are ob-
tained by minimizing the magnetic free enthalpy of the
sample, and a complete set of transport equations is de-
rived [11]. MS use the same rigorous standard method
as that used by Bekarevitch and Khalatnikov in their
theory of vortex motion in rotating Herr [15]. The ori-
ginality of the MS theory essentially lies in obtaining and
relying on the following three basic equations, namely,
the London macroscopic equation (1), the equation (2)
for local vortex equilibrium, and the boundary equation
(3):

m =B—m/e curlV, ,

J=J, = —curls,

gxN=O.

(2)

(3)

Here m and e are the electronic mass and charge, N is

the outward normal unit vector, and the vortex potential
e is defined as r)F/r)m. The equation of state e(mot T) is

directly related to the reversible magnetization curve
[16]. Equation (1) distinguishes m from B, and justifies
taking them as independent local variables; its counter-
part in rotating HeII is m=nK'v=curlV„where x is the
quantum of circulation. Equation (2), or J, +curls=O,
states in a macroscopic way that the supercurrent at the
vortex cores is zero, including the contribution induced by
the vortex itself if it is curved. As in rather general cases
e=ev is along VL, Eq. (3) means that the VL must end
perpendicular to the sample surface. As shown in Fig. 1,
a systematic bending of VL in xz planes can exist at equi-
librium provided that a supercurrent flows in the y direc-
tion. From Eqs. (1) and (2) and from Maxwell equa-
tions, it is easily seen that such a distortion of the vortex
array takes place, and associated J, flow, only over a
small depth d —k(1+m/poe) 't from the surface, while

J, =O and m=B in the bulk [11]. For instance, if a slab
is inclined to the applied field [Fig. 1(a)], the boundary
condition (3) entails two perturbed layers, where equilib-
rium supercurrents are nothing but Meissner-like di-
amagnetic currents. We have shown [17] that a similar
eAect exists in a rotating cavity in HeII, in agreement
with experiment (see Fig. 1 in Ref. [16]).

FIG. 1. Nondissipative currents associated with a distortion
of the vortex lattice. VL are shown. Magnetic field lines (not
shown) are curved in opposite directions. (a) Diamagnetic
currents in a slab inclined to the applied magnetic field. There
is no pinning. The sample, including the surface, is perfect. (b)
Subcritical transport currents in a rough slab normal to the
field. The surface shown in this case is the mean smoothed sur-
face. In the perturbed layer, vortex lines are not field lines, in

accordance with the London macroscopic equation (1).

A continuum description excludes inhomogeneities on
the scale of a. However, surface irregularities on a scale
comparable to or smaller than a are unavoidable in soft
samples as well. Therefore MS suggest that Eq. (3)
should be replaced by an inequality in the form ~exN~
~ csinO„where N is now normal to the mean smoothed
surface. So a large number of metastable or nondissipa-
tive configurations can occur, as frequently observed in

disordered systems or in systems subject to irregular
boundary conditions. Let us mention for example the
eA'ect of surface roughness on the wettability, resulting in

contact-angle hysteresis [18]. As shown in Fig. 1(b), this
new boundary condition allows a net transport super-
current to flow near the surface [11,16]. Thus connecting
I, with e(met T) and sinO, (1, we are able to account for
the order of magnitude of critical currents in soft sam-
ples, as well as for their field and temperature dependence
[16]. We stress that, in both Figs. 1(a) and 1(b), VL and
magnetic field lines separate and curve in opposite direc-
tions across the two perturbed layers, consistent with Eq.
(1).

When the current density J departs from —curls, the
VL move. So it is convenient to separate J into two parts
as J ~

+ J2, where J ~

= —curls is the nondissipative part of
the current [11]. J| is defined, at any point and time, as
the supercurrent (including diamagnetic currents) that
would come into equilibrium with the vortex array in its
instantaneous configuration. In quasistationary condi-
tions, covering ac transport currents in the acoustic range
of frequencies, and the whole investigated spectrum of
flux-flow noise (0-10 kHz), the MS transport equations
take a simplified form. They yield vL= —pf/m(v&&Jq)
and E = —vL x m =pf J2~, where pf (m) is the flux-flow
resistivity [11]. Whereas the currents J| may be regard-
ed as idealized surface currents il (i ~A/m) on the scale of
the sample, the currents J2 are bulk distributed.

A picture of the dc flux flow, including a possible
mechanism of noise, follows at once from the above inter-

1522



VOLUME 70, NUMBER 10 PHYSICAL REVIEW LETTERS 8 MARCH 1993

pretation of pinning in soft samples. The observed shape
of the V-I curve at large currents, V=Rf(I —I, ), sug-
gests that the surface retains its ability to carry a con-
stant nondissipative current, at least on the average.
Thus, by assuming that the vortex array moves uniformly
while maintaining its critical-state configuration, such as
sketched in Fig. 1(b), MS could explain most of the dc
properties, in particular the dc Joule effect [11,14]. Of
course, the rigid and uniform motion of VL, especially
near the surface, is unrealistic; it only represents a time-
average picture of the vortex Aow. By handling it as if it
were strictly steady, MS just follow a familiar procedure
in the hydrodynamics of turbulence where, in many prac-
tical situations, the mean Aow developments of real in-
terest. Concerning noise, however, we cannot ignore the
irregularities of the vortex Aow. The motion of VL slip-
ping through the surface defects must be irregular, giving
rise to large local fluctuations of the VL bending and as-
sociated J~'s. Nevertheless the relative fluctuations of the
instantaneous critical current (I~), defined here as the
flux I ~ of J~ through a cross section averaged over the
length of the sample, should be considerably reduced by a
well-known statistical effect, to typically 10 -10 . At
constant I=I~+I2, correlative Auctuations of the bulk
dissipative current, BI2= —6'I~, entail a small voltage
noise 8V=Rf(812) = —Rf(SI|). This two-step mecha-
nism explains the smallness of the voltage noise in pure
Nb, despite comparable noise sources 6J| such as re-
vealed by the field noise [9] (see below). More quantita-
tively, we shall describe surface currents i~ as a 2D
homogeneous t urbu lent fl ow

As the current density distribution J(x,y, z) IIuctuates,
the small magnetic field b due to the transport current
also is noisy. The low-frequency noise Bb (typically
100&0 rms in a 1 mm pick-up coil) has been measured
recently by one of us [9] and by Yeh and Kao [19]. It
should be noted that Bb(t) is too small for any induction
term —it&/8t to be significant in BV (except perhaps in

very pure metals, as Rf 0). This is corroborated by the
fact that no inAuence of the measuring circuit geometry
is observed. To account for the minuteness of the field
noise, Yeh and Kao present a new and strongly amended
version of the shot noise model. But, as a result, the volt-
age noise is no longer explained, while a successful theory
ought to account for both noises.

Let us consider a simple standard situation, so as to get
rid of unimportant end effects: The sample is taken as a
"soft" piece by=L of an otherwise "hard" thin strip of
width hx =O'. Both ends of the strip serve as equipoten-
tial current leads. Thus the voltage V across this sample
(and 8V) is unambiguously defined, and can be written as
the integral of E~ (b'E~) over the sample volume, divided
by the cross-sectional area. Small contributions of the
field noise (or Bco) in 6'E~, though detectable [9], may be
neglected as a first excellent approximation, so that
6E~ = pf6Jz~ and BV= Rf(BI2) as stated above. On the

other hand, the field noise may be investigated with a
variety of coils. For definiteness, let @(t) be the noisy
magnetic flux through a rectangular loop L.'x 8' lying in
the xy plane of the strip, and overlapping the sample
(L') L).

Dividing the i~ field into mean and fluctuating parts,
we write

ii =i,y+u(r, t). (4)

C„(r)=2Rj(W/L)u* c f(r),
Ctt, (r) =(po/6)LWu* c f(r),
Cyt, (z) =0.

(6)

(7)

At a given operating point (T,B,I), we always ob-
served that voltage and field noise spectra exhibit the
same f dependence, interpreted here as that of noise
sources il [i.e., the Fourier transform of f(r)]. So their
amplitudes may be characterized by the rms values 6V*
and 6@*. By measuring BV* =Catv(0), and comparing
with Eq. (6), where f(0) =1, we get the "elementary
Auctuating current" u *c. As I is increased along the
linear part of the V-I curve, we find that u*c=const
(typically 1 mA), while the spectra retain their shape.
This conforms with the idea that any further increase of
the bulk current I2 does not affect the well-established
turbulent Aow of the surface current I]. We again em-
phasize that this steady noise is settling only when the en-
tire vortex array is moving. The correlation of pinning
and noise levels has long been noticed [7,20]. For in-
stance, while the critical current of a Pb82In~8 strip de-
creased rapidly as the field was increased, u*c/I, =const
in an intermediate range of fields (0.2 & B/B, 2 & 0.8).
Taking u* —i„as expected in a fully developed tur-
bulence, we obtain c —1 pm, consistent with our assump-
tions. On the other hand, 6V* and 6@* have been mea-
sured for several samples cut from the same PbIn foil.
Except for end effects in W/L, we find that 8'V* ec L/ W,
and 8@* ~ L W, in accordance with Eq. (6) [where
RI ~L/W] and Eq. (7), if u*c is assumed to be size in-
dependent (homogeneous turbulence).

The main achievement of the above description is to
account for the interrelation between voltage and field

Assuming uniform surface conditions, i, =const, and I,
= 2Wi, . The (only useful) y-y component of the current
correlation tensor, for two points of the surface separated
by the space vector R(X, Y), reads

uy(r, t)uy(r R, t r) =u* C(R, r).
Here u* is the intensity of the turbulence The .space-
time correlation coefficient C(R, r) is assumed to de-
crease rapidly as R increases (for any r); its space in-
tegral over XY can be written as c f(r ), where f(0) =1.
This assigns a length scale c to the turbulence. We
presume that a «c « 8'. Then a straightforward calcula-
tion gives the auto- and cross-correlation functions
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noises. From Eqs. (6) and (7), the amplitude ratio
6V*/8@* is entirely predicted in terms of known parame-
ters, in full agreement with experiment. Furthermore,
measurements of cross-power spectra confirm the absence
of correlation as required by Eq. (8). Experimental de-
tails are planned to be published elsewhere. These results
are at variance with predictions of shot-noise models,
where 6V(r) —(vl. /8') M&(t) (strict equality would be ob-
tained in the approximate rectangular-pulse model first
proposed in Ref. [I]), so that 8V and 6& should be totally
correlated. Moreover, the expected ratio 6&*/6'V*
should be much larger than that observed by a factor of
10 —10 (depending on the sample size).

Furthermore, the flux-flow noise in PbIn and Nb bars
of large cross section (4&&4 mm ) has been investigated
by arranging several coils around the sample [9]. The
analysis of auto- and cross-power spectra in this geometry
proves the existence of surface-volume fluctuations of the
current distribution. It is worth noting that Nb samples
used were single crystals of the same quality as those in

which a quasiperfect crystal of vortex lines was observed
by neutron diffraction [21]; the vortex crystal was pre-
served in I]ux I]ow [22]. Nevertheless critical currents
and field noise levels are quite comparable to those ob-
served in standard PbIn polycrystals. The smallness of
BV in pure Nb is not connected with the perfection of the
vortex lattice, as suggested by Heiden et al. [5], but is

merely due to the relatively low resistivities.
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