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Persistent Currents in an Interacting 1D Disordered Ring: Manifestations of the
Mot t-Hubbard Transition
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We present an exact calculation of the persistent current in interacting disordered 1D rings. This
system exhibits a variety of interesting behaviors depending on the disorder and the strength of
electron-electron interactions. We find that even for the disordered case the current at high values of
interactions is strongly suppressed due to the Mott-Hubbard metal-insulator transition. We observe
that no dramatic increase of the averaged current or its rms value as a result of interactions is
possible for these systems.

PACS numbers: 72.10.Bg, 05.30.Fk, 71.30.+h

Noninteracting electrons in an ordered 1D ring
threaded by a magnetic Hux are known to carry per-
sistent currents periodic in the magnetic Hux of ampli-
tude evF/L (where v~ is the Fermi velocity, and L is
the ring s circumference) [1—5]. For a disordered ring it
is theoretically predicted that the averaged current am-
plitude will drop as a function of disorder. These re-
sults are also correct for a multichanneled quasi-1D ring.
The rms value of the current is calculated to be of the
same order as the amplitude of the current [2, 4, 5]. An
experiment performed on 10 quasi-1D disordered rings
measured the averaged amplitude of the current to be of
order 10 evF/L [6], in good agreement with theory. On
the other hand, a recent experiment on three single rings
measured the current to be of order ev~/L [7].

The large difFerence between the measured current am-

plitude in those two experiments has recently led to many '

theoretical attempts to explain this discrepancy. Most of
the published works try to explain this discrepancy as
the result of the fact that previous theoretical work on
persistent currents ignored the role of electron-electron
interactions in these systems [8—12]. Some of these works
concentrate on the inHuence of interactions on the aver-

aged amplitude [8, 9, ll], while others deal with the influ-

ence of interactions on the rms value of the amplitude [10,
12]. Nevertheless, no consensus on the exact influence of
interactions in both cases has yet been reached.

The main motivation for considering the role of inter-
actions in the disordered case is the hope that electron-
electron interactions will tend to homogenize the system,
thus ofFsetting the reduction in current due to disorder.
In this Letter we present an exact study of the influence of
interactions on a 1D single band spinless fermion model
on a small lattice. Our results for the behavior of the cur-
rent for difFerent values of interactions and disorder are
summed up in a schematic way in Fig. 1. It can be seen
that interactions play a difFerent role for difFerent regimes
of parameter space. There is a line of maximum enhance-
ment for strong disorders and medium strength of inter-
action. Even for maximum enhancement the value of
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FIG. 1. A schematic drawing of the main features of the
current dependence on disorder and interactions. The local-
ization length ( and Bohr radius a~ are defined in the text.

current is very far from the ordered noninteracting value
of ev~/L. For strong interactions the current is sup-
pressed by the Mott-Hubbard transition. Maximum sup-
pression of the current by interactions is achieved along
a line corresponding to weak disorder and strong interac-
tions. Returning to the general question of the inHuence
of interactions on the averaged current, it can be seen
that, although a complex behavior of the current as a
function of interaction is observed, none of the changes
will increase the averaged current to the value ev~/L.
The reason is that for values of interaction which are big
enough to cancel out efFects of disorder the current will
decrease because of the Mott-Hubbard transition.

The disordered 1D ring system may be represented by
the following Hamiltonian:

1509



VOLUME 70, NUMBER 10 PH YSICAL REVIEW LETTERS 8 MARCH 1993

where e, is the on-site energy which is chosen randomly
between —W/2 and W/2. V(0) = exp(i8) V, where V is a
constant hopping matrix element. Thus we are consider-
ing on-site diagonal disorder. The phase 0 = 2vrsg/Lgo,
where s is the lattice constant, L is the length of the ring,

P is the magnetic flux, and Po is the quantum flux unit.

In the remainder of the Letter we shall take Po = 1. a,
(a, ) is the fermionic creation (destruction) operation.

The interactions between the electrons are represented
by H;„&. We have chosen to consider a long range
Coulomb interaction of the form

(2)

where K represents the average positive jellium which
equals the average electron density. We shall define e, =
e2/s in order to simplify further discussions.

In order to obtain a reliable guide to the role played by
interactions in determining the persistent currents in dis-
ordered rings, we have chosen to solve exactly the many-
body Hamiltonian given in Eq. (1). This is achieved by
an exact calculation of the ground state energy level, as
a function of the magnetic flux P, for a finite size system
of m sites and n electrons. The number of eigenvec-
tors spanning the many-body Hilbert space is M = ( ).
The many-body Hamiltonian may be represented by an
M x M matrix which can be numerically diagonalized.
Once the lowest eigenvalue is obtained for different P,
the persistent current may be calculated using the usual
definition

1.E-4:

-1.E-4:

0.012
0.008

0.004

-0.004
-0.008
-0.012

I/] o. i 2
0.08
0.04

0
-0.04
-0.08
-0.1 2

0.4 0.8 1.2 1.6 2.4 2.8

FIG, 2. The persistent current as a function of magnetic
Aux for different values of interactions and disorder. The
full line represents the noninteracting case e, = 0, rvhile the
dashed line represents the interacting case. (a) W/U = 0,
e,/V = 10; (b) W/U = 10, e,/V = 10; (c) W/U = 20,
e, /V = 20; (d) W/V = 100, e,/V = 100. The scale of the
current is strongly dependent on disorder. The maximum in-
fluence of interactions is seen in (d) for which the current
increases by a factor of 2.5.

where E(P) is the lowest eigenvalue, and c is the speed
of light.

We have chosen to consider systems of 6 sites and 3
electrons, and systems of 10 sites and 5 electrons. The
solution of these systems involves the diagonalization of
20 x 20 and 252 x 252 matrices. The persistent current
for different values of W, V, and e, was calculated. Since
we are studying the averaged persistent current we must
average over many realizations of disorder. For the 6
site models we have averaged over 10000 realizations,
while for the 10 site models we have averaged over 1000
realizations.

A representative example of the persistent current for
different values of V, W, and e, are plotted in Fig. 2.
As one can expect the current is periodic in P for all
the cases. For the ordered sample plotted in Fig. 2(a),
it is clear that interactions reduce the amplitude of the
persistent current. For different values of disorder repre-
sented in Figs. 2(b)—2(d), it is seen that interactions play
a more complicated role. In some they cases increase the
current, while in other cases they decrease it. Generally
it is seen that interactions do not dramatically change
the basic shape of the curves, although their relative am-
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1I = Io exp( —L/(), —
2

(4)

where Io = 47rVs/L, and ( is the localization length.
For long samples (L & 20s) ( was shown to follow two
asymptotical forms: ( s/ln(W/V) for strong disor-
der (W )) 27rU), and ( s(V/W)~ for weak disorder
(W (( 2vrV) I13]. In Fig. 3(a) we plot ( using Eq. (4)

plitude may change. Therefore, the interesting property
of the persistent current is its amplitude, which may be
characterized by the absolute current at P/Po = 0.25 [2],
denoted as I. From the complicated behavior seen in
Fig. 2 it is clear that one should investigate the whole
parameter space using two relevant energy scales which
will be defined latter.

First we shall study the two limiting cases, i.e. , the be-
havior of the persistent current. as a function of disorder
with no interactions (e, = 0), and for the interacting case
with no disorder (W = 0). For the first case the relevant
energy parameter is U/W, which is the usual measure of
disorder in such models. It is well known that without in-
teractions the current amplitude behaves in the following
way [2]:
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and our numerical calculations of I. We can see that the
numerical results generally follow the above asymptotic
behavior, although some deviations appear due to the
short sample lengths.

For the ordered sample with interactions the relevant
energy parameter is e, /V, which corresponds in terms of
length units to the Bohr radius a~ = h /me2. Using the
mass definition for tight binding models the Bohr radius
is a~ = (2V/e, )s. In Fig. 3(b) we present our numerical
results for the persistent current in this case. One can
clearly see the Mott-Hubbard metal-insulator transition
expected for the current in 1D spinless fermionic mod-
els [14]. The current in the ordered interacting case may
be written as I(a~) = ev+/L, where v& is the effective
Fermi velocity. For a~ ) s the effective Fermi veloc-
ity changes moderately as a function of a~. For nearest
neighbor interactions the Fermi velocity is given by v* =
v~n2 sing/4p(~ —p) [14—16], where p = arccos(1/a~).
As can be seen in Fig. 3(b), although our results are for
long range interactions and short samples they fit quite
well the above analytical formula. For a~ & 8 a sharp
decrease in the current is observed. For an infinite sam-
ple and nearest neighbor interactions a discontinuity in
the Fermi velocity at a~ = 8 is expected. For a finite

sample one expects an exponential decrease to replace
the discontinuity as can be seen in Fig. 3(b) [14].

We now turn to the general case in which both length
scales (( and a~) determine the behavior of the persis-
tent current. Quite surprisingly the exponential behavior
of the current I exp( —I/() is still valid for most val-
ues of ( even for the interacting case. In Fig. 4 we plot
our numerical results of Iexp(L/() as a function of ( for
different values of a~, and for different number of sites.
As one can see the interactions modify the prefactor of
the exponential which increases monotonically with a~,
except for the region of small localization length which
will be discussed later. Therefore, one concludes that for
not too strong interactions (aB & s) and disorder (( & I.)
the current can be approximated as

I(a~, () = I(a~)exp( —L/(),

where I(o~) is the current in the ordered case, which is
plotted in Fig. 3(b), and ( is the noninteracting local-
ization length. Hence, quite surprisingly the influence of
interactions and disorder on the current may be treated
independently in this regime.

As we have seen in Fig. 4 the simple relation of Eq.
(5) does not hold for a~ ( s or ( ( L. In order to gain
a better understanding of the current amplitude behav-
ior we present in Fig. 5 all regions of parameter values.
Since we are mainly interested in the inHuence of interac-
tions on the averaged current we plot Iexp(L/(), which
enables one to immediately see whether the presence of
interactions increased or decreased the averaged current.
It can be clearly seen that there are different regions of
influences which are described schematically in Fig. 1.

One can gain a physical insight into the role played
by interactions using the following argument: Disorder
tends to localize the electrons in the lowest energy sites in
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FIG. 3. (a) ln(() as a function of W/V for noninteracting

systems. Squares represent numerical results for the 6 site,
3 electron samples, while plusses correspond to the 10 site )

5 electron samples. The full line represents the asymptotical
forms given in the text. (b) The current as a function of
interactions a~ for ordered samples. The full line represents
the results of Refs. [14—16], while the dashed line represents
a correction due to long range interactions. In the inset we
enlarge the transition region.
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FIG. 4. The current as a function ( for different values
of a~. The full lines represent the 6 site samples, while the
symbols represent the 10 site samples. The higher curves
correspond to higher values of as. We see that for ( ) L and
high values of a~ an almost exponential behavior is followed.
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I IG. 5. The normalized current for thehe relevant regime of
parameter space.

le thus reducing the persistent current. Turn-
' '

ll kick outing on electron-electron interactions will initia y
the electrons from t eir pre eri th ' referred sites, thus delocalizing
them, obviously increasing the persistent current. T e
above argument may be illustra yted b the following con-

f the stron'd ' The ground state wave function o
ner e . Fordisordered case is denoted by 4p with energy Ep. Or

small interactions e rsth fi t excitation will be the move-
ment of one electron to a position which has a hig er

favorable from the interactionon-site energy but more avora
point of view. e s a eW h 11 denote this state as 4i which

TV —e . It mi ht be advanta-has an energy of order op+ V. —e, . 'g

geous for the sys em o orh t t f m a superposition of those two
states in or er o ga'd t gain kinetic energy (from the hopping

of theelement v ~. e mayv ~. W then write the wave function o e
= v C4 + gl —C~IJi. By minimizing the

energy (0]H]4) = e, +(1—C)(W —e,)+2V' ( — )
re V' = ReV(8)] one obtains C. Using the definition

of Eq. (3), and the fact that only V' depends on P, we

get

(6)

One can see that for small e, the current is increasing as
stated above. Another interesting feature is a maximum

f t = W —2V'. This maximum is seenas afunctionof e, at ~, =
in Fig. 5, an as e. 5, d h the same qualitative characteristics as
Eq. t'6.

s one can con-For much stronger interactions a~
struct a similar argument for the influeuence of disorder.
The ground state in the presence of small enough disor-
der is a pinned igner ad W 1 ttice. The first excitation will
be a single e ec ron s i1 t hifting into a lower on-site energy

h' h f course raises the interaction energy. This ex-
the

line of our previous argument one obtainains for the .ersis-
tent current the same result as q. ~ ~„E . ~6~ where obviously

W —e, is replaced by e, —W. This current has a mini-
mum as a function o af t' f W t W = 2V' —e, . That minimum
in current is clearly seen in Fig. . g5. For lar er interac-
tions a~ && 8 the system will mimic the Mott-Hubbard

We have also calculated the inHuence of the interac-
I . The detailed

results will be described elsewhere, but it can definitely
be stated that interactions play a simi ar ro

' h'i ar role in this
case to t e roe p ayh 1 layed for the averaged current, i.e. ,

(I'(( & ))l(1(( ~ ))' - (I'(( ~~ = ~))l(1((,~~ =
2

In conclusion, we calculated exactly the persistent cur-
rent of a small interacting disordered 1D ring. We found
that depen ing on eu' th disorder the interactions can in-
crease or ecrease e currth urrent. The main features in
the arameter space were characterize No dramatic
increase in the averaged current or its rms value is pos-
'bl . Th f re for half filled 1D spinless mo e s it is

clear that interactions cannot explain the resu ts o e
single ring experimen ~7~ . Very recent perturb ative cal-
culations of Smith and Ambegaokar seem to support our
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